Proteolytic processing of the amyloid precursor protein (APP) generates amyloid beta (Abeta) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease. Cleavage by beta-secretase at the amino terminus of the Abeta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated carboxy-terminal fragment. Cleavage of the C-terminal fragment by gamma-secretase(s) leads to the formation of Abeta. The pathogenic mutation K670M671-->N670L671 at the beta-secretase cleavage site in APP, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased beta-secretase cleavage of the mutant substrate. Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the beta-secretase cleavage site, and find it to be the predominant beta-cleavage activity in human brain. We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for beta-secretase. Cloning and expression of the enzyme reveals that human brain beta-secretase is a new membrane-bound aspartic proteinase.
A series of novel N-(2-(phenylamino)-4-fluorophenyl)-pyrazole-4-carboxamides 1–15 and aromatic carboxamides with a diphenylamine scaffold 16–29 were designed, synthesized, and evaluated for their antifungal activities. In vitro experiments showed that compound 6 (EC50 = 0.03 mg/L) was superior to bixafen (EC50 = 0.04 mg/L) against Rhizoctoinia solani and compound 6 (IC50 = 1.41 mg/L) was close to bixafen (IC50 = 1.22 mg/L) against succinate dehydrogenase from R. solani. Additionally, in vivo pot experiments showed that compound 6 (EC50 = 1.93 mg/L) was better than bixafen (EC50 = 3.72 mg/L) and close to thifluzamide (EC50 = 1.83 mg/L) against R. solani. In vivo field trials showed that compound 6 at 200 g ai ha–1 had 64.10% control efficacy against rice sheath blight after 21 days with two sprayings, close to thifluzamide (71.40%). Furthermore, molecular docking showed that compound 6 anchors in the binding site of SDH.
BackgroundMesenchymal stem cells (MSCs) play a significant role in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the effects of exosomal miR-133b derived from MSCs on glioma cell behaviors.MethodsMicroarray-based analysis identified the differentially expressed genes (DEGs) in glioma. The expression patterns of EZH2 and miR-133b along with interaction between them were clarified in glioma. The expression of miR-133b and EZH2 in glioma cells was altered to examine their functions on cell activities. Furthermore, glioma cells were co-cultured with MSC-derived exosomes treated with miR-133b mimic or inhibitor, and EZH2-over-expressing vectors or shRNA against EZH2 to characterize their effect on proliferation, invasion, and migration of glioma cells in vitro. In vivo assays were also performed to validate the in vitro findings.ResultsmiR-133b was downregulated while EZH2 was upregulated in glioma tissues and cells. miR-133b was found to target and negatively regulate EZH2 expression. Moreover, EZH2 silencing resulted in inhibited glioma cell proliferation, invasion, and migration. Additionally, MSC-derived exosomes containing miR-133b repressed glioma cell proliferation, invasion, and migration by inhibiting EZH2 and the Wnt/β-catenin signaling pathway. Furthermore, in vivo experiments confirmed the tumor-suppressive effects of MSC-derived exosomal miR-133b on glioma development.ConclusionCollectively, the obtained results suggested that MSC-derived exosomes carrying miR-133b could attenuate glioma development via disrupting the Wnt/β-catenin signaling pathway by inhibiting EZH2, which provides a potential treatment biomarker for glioma.
The platinum(II) tris (pyrazol-1-yl)borate complex [PtMe 2 {(pz) 3 BH-N,N′}] -reacts with phenol or aqueous HBF 4 in acetone to form the dimethylhydridoplatinum(IV) complex PtHMe 2 {(pz) 3 BH-N,N′,N′′}. The complex decomposes above ∼140 °C in toluene-d 8 to give methane. Theoretical calculations at the SCF and MP2 levels for the species PtXMe 2 {(H 2 CdNsNH) 3 BH-N,N′,N′′} (where X ) H, OH, Me and the fragment [(H 2 Cd-NsNH) 3 BH] -is a model for [(pz) 3 BH] -) yield geometries that compare well with structural reports for Pt(OH)-Me 2 {(pz) 3 BH} and PdMe 3 {(pz) 3 BH}.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.