Mesenchymal stem cells (MSCs) exert therapeutic effect on treating acute myocardial infarction. Recent evidence showed that paracrine function rather than direct differentiation predominately contributes to the beneficial effects of MSCs, but how the paracrine factors function are not fully elucidated. In the present study, we tested if extracellular vesicles (EVs) secreted by MSC promotes angiogenesis in infracted heart via microRNAs. Immunostaining of CD31 and matrigel plug assay were performed to detect angiogenesis in a mouse myocardial infarction (MI) model. The cardiac function and structure was examined with echocardiographic analysis. Capillary-like tube formation, migration and proliferation of human umbilical vein endothelial cells (HUVECs) were determined. As a result, MSC-EVs significantly improved angiogenesis and cardiac function in post-MI heart. MSC-EVs increased the proliferation, migration and tube formation capacity of HUVECs. MicroRNA (miR)-210 was found to be enriched in MSC-EVs. The EVs collected from MSCs with miR-210 silence largely lost the pro-angiogenic effect both in-vitro and in-vivo. The miR-210 target gene Efna3, which plays a role in angiogenesis, was down-regulated by MSC-EVs treatment in HUVECs. In conclusion, MSC-EVs are sufficient to improve angiogenesis and exert therapeutic effect on MI, its pro- angiogenesis effect might be associated with a miR-210-Efna3 dependent mechanism. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.
A series
of novel N-(2-(phenylamino)-4-fluorophenyl)-pyrazole-4-carboxamides 1–15 and aromatic carboxamides with a
diphenylamine scaffold 16–29 were
designed, synthesized, and evaluated for their antifungal activities.
In vitro experiments showed that compound 6 (EC50 = 0.03 mg/L) was superior to bixafen (EC50 = 0.04 mg/L)
against Rhizoctoinia solani and compound 6 (IC50 = 1.41 mg/L) was close to bixafen (IC50 = 1.22 mg/L) against succinate dehydrogenase from R. solani. Additionally, in vivo pot experiments showed that compound 6 (EC50 = 1.93 mg/L) was better than bixafen (EC50 = 3.72 mg/L) and close to thifluzamide (EC50 =
1.83 mg/L) against R. solani. In vivo field trials
showed that compound 6 at 200 g ai ha–1 had 64.10% control efficacy against rice sheath blight after 21
days with two sprayings, close to thifluzamide (71.40%). Furthermore,
molecular docking showed that compound 6 anchors in the
binding site of SDH.
We demonstrate that tuning the stereo-hindrance of the phenoxy-alkyl chains at the 4-position of a curcumin scaffold could lead to certain selectivity for soluble Aβs over insoluble Aβs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.