Skeletal muscle atrophy/wasting is a serious complication of a wide range of diseases and conditions such as aging, disuse, AIDS, chronic obstructive pulmonary disease, space travel, muscular dystrophy, chronic heart failure, sepsis, and cancer. Emerging evidence suggests that nuclear factor-kappa B (NF-κB) is one of most important signaling pathways linked to the loss of skeletal muscle mass in various physiological and pathophysiological conditions. Activation of NF-κB in skeletal muscle leads to degradation of specific muscle proteins, induces inflammation and fibrosis, and blocks the regeneration of myofibers after injury/atrophy. Recent studies employing genetic mouse models have provided strong evidence that NF-κB can serve as an important molecular target for the prevention of skeletal muscle loss. In this article, we have outlined the current understanding regarding the role of NF-κB in skeletal muscle with particular reference to different models of muscle-wasting and the development of novel therapy.
The TNF-related cytokine TWEAK promotes skeletal muscle atrophy that is associated with classical disuse syndromes.
Obesity is a complex multifactorial disease that accumulated excess body fat leads to negative effects on health. Obesity continues to accelerate resulting in an unprecedented epidemic that shows no significant signs of slowing down any time soon. Raised body mass index (BMI) is a risk factor for noncommunicable diseases such as diabetes, cardiovascular diseases, and musculoskeletal disorders, resulting in dramatic decrease of life quality and expectancy. The main cause of obesity is long-term energy imbalance between consumed calories and expended calories. Here, we explore the biological mechanisms of obesity with the aim of providing actionable treatment strategies to achieve a healthy body weight from nature to nurture. This review summarizes the global trends in obesity with a special focus on the pathogenesis of obesity from genetic factors to epigenetic factors, from social environmental factors to microenvironment factors. Against this background, we discuss several possible intervention strategies to minimize BMI.
Sperm motility is vital to human reproduction. Malformations of sperm flagella can cause male infertility. Men with multiple morphological abnormalities of the flagella (MMAF) have abnormal spermatozoa with absent, short, coiled, bent, and/or irregular-caliber flagella, which impair sperm motility. The known human MMAF-associated genes, such as DNAH1, only account for fewer than 45% of affected individuals. Pathogenic mechanisms in the genetically unexplained MMAF remain to be elucidated. Here, we conducted genetic analyses by using whole-exome sequencing and genome-wide comparative genomic hybridization microarrays in a multi-center cohort of 30 Han Chinese men affected by MMAF. Among them, 12 subjects could not be genetically explained by any known MMAFassociated genes. Intriguingly, we identified compound-heterozygous mutations in CFAP43 in three subjects and a homozygous frameshift mutation in CFAP44 in one subject. All of these recessive mutations were parentally inherited from heterozygous carriers but were absent in 984 individuals from three Han Chinese control populations. CFAP43 and CFAP44, encoding two cilia-and flagella-associated proteins (CFAPs), are specifically or preferentially expressed in the testis. Using CRISPR/Cas9 technology, we generated two knockout models each deficient in mouse ortholog Cfap43 or Cfap44. Notably, both Cfap43-and Cfap44-deficient male mice presented with MMAF phenotypes, whereas the corresponding female mice were fertile. Our experimental observations on human subjects and animal models strongly suggest that biallelic mutations in either CFAP43 or CFAP44 can cause sperm flagellar abnormalities and impair sperm motility. Further investigations on other CFAP-encoding genes in more genetically unexplained MMAF-affected individuals could uncover novel mechanisms underlying sperm flagellar formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.