Highlights d Secondary bile acids (SBAs) are reduced in UC pouch patients, relative to FAP patients d Reduced Ruminococcaceae in UC pouches is associates with SBA deficiency d SBA supplementation ameliorates inflammation in animal models of colitis d The protective effect of SBAs is in part dependent on the TGR5 bile acid receptor
Purpose: The purpose of our study was to identify an unique gene that shows cancer-associated expression, evaluates its potential usefulness in cancer diagnosis, and characterizes its function related to human carcinogenesis.Experimental Design: We used the differential display reverse transcription-PCR method with normal cervical, cervical cancer and metastatic tissues, and cervical cancer cell line to identify genes overexpressed in cancers.Results: We identified a minichromosome maintenance 3 (MCM3) gene that was overexpressed in various human cancers, including leukemia, lymphoma, and carcinomas of the uterine cervix, colon, lung, stomach, kidney and breast, and malignant melanoma. Western blot and immunohistochemical analyses also revealed that MCM3 protein was elevated in most of human cancer tissues tested. We compared the MCM3 protein expression levels in human cancers with conventional proliferation markers, Ki-67 and proliferating cell nuclear antigen. MCM3 antibody was the most specific for multiple human cancers, whereas proliferating cell nuclear antigen was relatively less effective in specificity, and Ki-67 failed to detect several human cancers. The down-regulation of MCM3 protein level was examined under serum starvation in both normal and cancer cells. Interestingly, MCM3 protein was stable in MCF-7 breast cancer cells even up to 96 hours after serum starvation, whereas it was gradually degraded in normal BJ fibroblast cells. Nude mice who received injections of HEK 293 cells stably transfected with MCM3 formed tumors in 6 weeks.Conclusions: Our study indicates that determination of MCM3 expression level will facilitate the assessment of many different human malignancies in tumor diagnosis, and MCM3 is involved in multiple types of human carcinogenesis.
BackgroundBasic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis.MethodsWe used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins.ResultsDDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67.ConclusionGremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and therapeutic strategies against human cancers.
Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood is able to escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. While all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells, but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important read-out to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.