We construct the equation of state (EOS) of nuclear matter using the relativistic mean field (RMF) theory in the wide density, temperature range with various proton fractions for the use of supernova simulation and the neutron star calculations. We first construct the EOS of homogeneous nuclear matter. We use then the Thomas-Fermi approximation to describe inhomogeneous matter, where heavy nuclei are formed together with free nucleon gas. We discuss the results on free energy, pressure and entropy in the wide range of astrophysical interest. As an example, we apply the resulting EOS on the neutron star properties by using the Oppenheimer-Volkoff equation.
We construct the equation of state (EOS) of nuclear matter at finite temperature and density with various proton fractions within the relativistic mean field (RMF) theory for the use in the supernova simulations. The Thomas-Fermi approximation is adopted to describe the non-uniform matter where we consider nucleus, alpha-particle, proton and neutron in equilibrium. We treat the uniform matter and non-uniform matter consistently using the RMF theory. We tabulate the outcome as the pressure, free energy, entropy etc, with enough mesh points in wide ranges of the temperature, proton fraction, and baryon mass density.Comment: 22 pages, LaTeX, 9 ps-figures, Submitted to Prog.Theor.Phy
We construct the equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory, which can provide an excellent description of nuclear matter and finite nuclei. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We present two sets of EOS tables, namely EOS2 and EOS3. EOS2 is an update of our earlier work published in 1998 (EOS1), where only the nucleon degree of freedom is taken into account. EOS3 includes additional contributions from Λ hyperons. The effect of Λ hyperons on the EOS is negligible in the lowtemperature and low-density region, whereas it tends to soften the EOS at high density. In comparison with EOS1, EOS2 and EOS3 have an improved design of ranges and grids, which covers the temperature range T = 0.1-10 2.6 MeV with the logarithmic grid spacing ∆ log 10 (T /[MeV]) = 0.04 (92 points including T = 0), the proton fraction range Y p = 0-0.65 with the linear grid spacing ∆Y p = 0.01 (66 points), and the density range ρ B = 10 5.1 -10 16 g cm −3 with the logarithmic grid spacing ∆ log 10 (ρ B /[g cm −3 ]) = 0.1 (110 points).
We study the evolution of supernova core from the beginning of gravitational collapse of a 15M ⊙ star up to 1 second after core bounce. We present results of spherically symmetric simulations of core-collapse supernovae by solving general relativistic ν-radiation-hydrodynamics in the implicit time-differencing. We aim to explore the evolution of shock wave in a long term and investigate the formation of protoneutron star together with supernova neutrino signatures. These studies are done to examine the influence of equation of state (EOS) on the postbounce evolution of shock wave in the late phase and the resulting thermal evolution of protoneutron star. We make a comparison of two sets of EOS, that is, by Lattimer and Swesty (LS-EOS) and by Shen et al.(SH-EOS). We found that, for both EOSs, the core does not explode and the shock wave stalls similarly in the first 100 milliseconds after bounce. The revival of shock wave does not occur even after a long period in either cases. However, the recession of shock wave appears different beyond 200 milliseconds after bounce, having different thermal evolution of central core. A more compact protoneutron star is found for LS-EOS than SH-EOS with a difference in the central density by a factor of ∼2 and a difference of ∼10 MeV in the peak temperature. Resulting spectra of supernova neutrinos are different to the extent that may be detectable by terrestrial neutrino detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.