SUMMARY To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ~0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSCCMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.
The endothelium regulates vascular homeostasis, and endothelial dysfunction is a proximate event in the pathogenesis of atherothrombosis. Stimulation of the endothelium with proinflammatory cytokines or exposure to hemodynamic-induced disturbed flow leads to a proadhesive and prothrombotic phenotype that promotes atherothrombosis. In contrast, exposure to arterial laminar flow induces a gene program that confers a largely antiadhesive, antithrombotic effect. The molecular basis for this differential effect on endothelial function remains poorly understood. While recent insights implicate Kruppel-like factors (KLFs) as important regulators of vascular homeostasis, the in vivo role of these factors in endothelial biology remains unproven. Here, we show that endothelial KLF4 is an essential determinant of atherogenesis and thrombosis. Using in vivo EC-specific KLF4 overexpression and knockdown murine models, we found that KLF4 induced an antiadhesive, antithrombotic state. Mechanistically, we demonstrated that KLF4 differentially regulated pertinent endothelial targets via competition for the coactivator p300. These observations provide cogent evidence implicating endothelial KLFs as essential in vivo regulators of vascular function in the adult animal. IntroductionThrough the elaboration of numerous biological substances, ECs actively regulate fundamental physiological processes, such as regulation of blood coagulation, homing of immune cells, and barrier function. Studies over the past several decades have also identified key physiologic and pathologic phenotypic modulators of ECs. For example, stimulation of the endothelium with proinflammatory cytokines renders the endothelium dysfunctional, inducing a proadhesive and prothrombotic phenotype. In contrast, laminar flow induces critical genes that confer potent antithrombotic, antiadhesive, and antiinflammatory properties. The significance of fluid shear stress is evidenced by the observation that segments of the arterial tree exposed to laminar flow (e.g., straight regions of the vasculature) are less prone to the development of atherosclerotic lesions than are regions exposed to nonlaminar/disturbed flow (e.g., branch points). These observations have led to the current view that the balance of biochemical and biomechanical stimuli is the central determinant of vascular function under physiologic and pathologic conditions. Given the importance of the endothelium in vessel homeostasis, there is great interest in identifying molecular pathways that mediate the effects of both biochemical and biomechanical stimuli. Prior studies from our group and others have identified 2 members of the Kruppel-like factor (KLF) family of transcription factors, KLF2 and KLF4, as being of particular interest. Both KLF2 and KLF4 are induced by laminar flow and in in vitro stud-
The properties of the transient outward current (Ito) differ between rabbit and human atrial myocytes. In particular, rabbit Ito is known to recover more slowly than its human counterpart and to show much more frequency dependence. To assess the possibility that these physiological differences may reflect differing expression of K+ channel subunit gene products, we used a combination of whole-cell voltage-clamp, heterologous expression, pharmacological, antisense, and Western blot techniques. The inactivation of Ito in rabbit atrial myocytes was significantly slowed by hydrogen peroxide, with human Ito being unaffected. Use-dependent unblocking with 4-aminopyridine was not seen for rabbit Ito nor for Kv1.4 currents in Xenopus oocytes, whereas human Ito showed strong use-dependent unblock (as did Kv4 currents). Western blots indicated the presence of Kv4 proteins in both human and rabbit atrial membranes, but Kv1.4 was only detected in the rabbit. Antisense oligodeoxynucleotides directed against Kv4.3, Kv4.2, or Kv1.4 subunit sequences significantly inhibited Ito current density in cultured rabbit atrial myocytes, whereas only Kv4.3 antisense significantly inhibited Ito in human cells. Neither mismatch oligodeoxynucleotides nor vehicle altered currents in either species. We conclude that, unlike human atrial myocytes, rabbit atrial myocytes express Kv1.4 channel subunits, which likely contribute to a number of important physiological differences in Ito properties between the species. To our knowledge, these studies constitute the first demonstration of a functional role for Kv1.4 channels in cardiac membranes and provide insights into the molecular mechanisms of an important cardiac repolarizing current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.