In this paper non-synchronous vibration (NSV) of a GE axial compressor is simulated using a fully coupled fluid/strcuture interaction (FSI). Time accurate Navier-Stokes equations are solved with a system of 5 decoupled structure modal equations in a fully coupled manner. A 3rd order WENO scheme for the inviscid flux and a 2nd order central differencing for the viscous terms are used to resolve nonlinear interaction between vibrating blades and fluid flow. 1/7th annulus is used with a time shifted phase-lag (TSPL) boundary condition to reduce computational efforts. A fully conservative rotor/stator sliding boundary condition is employed to accurately capture unsteady wake propagation between the rotor and stator blades. The predicted dominant frequencies using the blade tip response signals are not harmonic to the engine order, which is the NSV. The blade vibration is torsionally coupled with highly oscillating blade pressure and is not damped out during the NSV. No resonance to the blade natural frequencies is found. The instability of tornado vortices in the vicinity of the rotor tip due to the strong interaction of incoming flow, tip vortex and tip leakage flow is the main cause of the NSV observed in this study.
Large eddy simulation (LES) is conducted to investigate coflow jet (CFJ) airfoil flows at high angle of attack (AOA). The Smagorinsky model with Van Driest damping is employed to resolve the subgrid-scale stress. The fifth-order weighted essentially non-oscillatory (WENO) scheme is used for reconstruction of the inviscid flux and the fourth-order central differencing for the viscous flux. The LES results at an AOA of 0 deg, 12 deg, 25 deg, and 30 deg with momentum coefficients of Cμ = 0.15 and 0.08 are compared with the experiment to understand the flow structure of the jet mixing and flow separation. The quantitative prediction of lift and drag and qualitative prediction of vortex structures are in good agreement with experiment.
This paper investigates non-synchronous vibration (NSV) mechanism of a high-speed axial compressor with three different rotor tip clearances. Numerical simulations for 1/7th annulus periodic sector are performed using an unsteady Reynolds-averaged Navier-Stokes(URANS) solver with a fully conservative sliding boundary condition to capture wake unsteadiness between the rotor and stator blades. The simulated NSV shows that the frequency and amplitude are strongly influenced by the tip clearance size and shape. The predicted NSV frequency is in good agreement with the experiment. The maximum amplitude of the NSV occurs at about 78% span of the rotor suction leading edge regardless of tip clearance due to a strong interaction of incoming flow, tip leakage flow and tip vortex. The instability of tornado like tip vortex oscillating in streamwise direction appears to be the main cause of the NSV observed in this study.
This paper uses a fully coupled fluid/structure interaction (FSI) to investigate the flutter mechanism of a modern transonic fan rotor with a forward travelling wave. To induce an initial travelling wave for the blade structure, an initial BC that can facilitate each blade to vibrate with a time lag by a given nodal diameter (ND) is implemented. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved with a system of structure modal equations in a fully coupled manner. The 5th order WENO scheme with a low diffusion E-CUSP Riemann solver is used for the inviscid fluxes and a 2nd order central differencing is used for the viscous terms. A half annulus sector is used for the flutter simulations with a time shifted phase lag boundary condition at the circumferential boundaries. The present FSI simulations show that the shock instability causes the flutter. When the detached normal shock moves further upstream in a direction normal to the blade chord, the interaction of the detached normal shock with tip leakage vortex creates more serious blockage to the blade passage that can introduce an aerodynamic instability to the blade structure due to the incoming flow disturbance, resulting in flutter. The flutter of the transonic fan observed in this study occurs at the 1st mode before the stall. The predicted flutter boundary agrees well with the experiment.
A high speed 1–1/2 axial compressor stage is simulated in this paper using an unsteady Reynolds-averaged Navier–Stokes (URANS) solver for a full-annulus configuration to capture its nonsynchronous vibration (NSV) flow excitation with rigid blades. A third-order weighted essentially nonoscillatory scheme for the inviscid flux and a second-order central differencing for the viscous terms are used to resolve nonlinear unsteady fluid flows. A fully conservative rotor/stator sliding boundary condition (BC) is employed with multiple-processor capability for rotor/stator sliding interface that accurately captures unsteady wake propagation between the rotor and stator blades while conserving fluxes across the rotor/stator interfaces. The predicted dominant frequencies using the blade tip response signals are not harmonic to the engine order, which is the NSV excitation. The simulation is based on a rotor blade with a 1.1% tip-chord clearance. Comparison with the previous 1/7 annulus simulations show that the time-shifted phase-lag BCs used in the 1/7 annulus are accurate. For most of the blades, the NSV excitation frequency is 6.2% lower than the measurement in the rig test, although some blades displayed slightly different NSV excitation frequencies. The simulation confirms that the NSV is a full annulus phenomenon. The instability of the circumferential traveling vortices in the vicinity of the rotor tip due to the strong interaction of incoming flow is the main cause of the NSV excitation. This instability is present in all blades of the rotor annulus. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect on the radial profile, particularly at radial locations above 70% span. A design with a lower loading of the upper blade span and a higher loading of the midblade spans is recommended to mitigate or remove NSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.