This paper demonstrates a new performance enhancement methodology for Co-Flow Jet (CFJ) airfoils using discrete injection jets. This research is motivated by the hypothesis that a discrete CFJ (DCFJ) airfoil will generate both streamwise and spanwise vortex structures to achieve more effective turbulent mixing than an open slot CFJ airfoil. Aerodynamic forces and DPIV measurements show that the DCFJ airfoil can achieve up to a 250% increase of maximum lift, and simultaneously generates a tremendous thrust. Nearly 80% of the injection momentum is converted to drag reduction, which indicates that CFJ airfoils are highly energy efficient. The stall angle of attack is also significantly increased. In other words, a DCFJ airfoil is a high lift system and at the same time is also a high thrust propulsion system with low energy expenditure. Best performances are achieved with small discrete holes and large obstruction factor. Power consumption is analyzed and is found to be low compared with the performance gain. Thus, the DCFJ airfoil concept appears to be very promising for the development of integrated airframe-propulsion systems and rotorcraft systems with high performance and high efficiency. Nomenclature AoA Angle of attack C Chord length CFJ Co-flow jet CC Circulation control C L Lift coefficient C D Drag coefficient Cμ Jet momentum coefficient Cμ * Jet momentum coefficient for open slot CFJ
This paper conducts numerical investigations for a 15% thickness Co-Flow Jet (CFJ) airfoil performance enhancement, which includes the variation of lift, drag, and energy expenditure at Mach number 0.03, 0.3, and 0.4 with jet momentum coefficient Cµ = 0.08. The angle of attack(AoA) varies from 0 • to 30 • . Two-dimensional simulation is conducted using a Reynolds-averaged Navier-Stokes (RANS) solver. A 5th order WENO scheme for the inviscid flux and a 4th order central differencing for the viscous terms are used to resolve the the Navier-Stokes equations. Turbulence is simulated with the one equation Spalart-Allmaras model.The study shows that at constant Cµ, the maximum lift coefficient is increased with the increasing Mach number due to the compressibility effect. However, at M=0.4, the airfoil stalls with slightly lower AoA due to the appearance of strong λ shock wave that interrupts the jet and trigger boundary layer separation. The drag coefficients vary less with the Mach number, but is substantially increased at Mach 0.4 when the AoA is high due to shock wave-boundary layer interaction and wave drag.The power coefficient is decreased when the Mach number is increased from 0.03 to 0.3. This is again due to the compressibility effect that generates stronger low pressure suction effect at airfoil leading edge, which makes the CFJ pumping easier and require less power. For the same reason of shock appearance at M=0.4 when the AoA is high, the power coefficient is significantly increased due to large entropy increase. Overall, the numerical simulation indicates that the CFJ airfoil is very effective to enhance lift, reduce drag, and increase stall margin with high Mach number up to 0.4 at low energy expenditure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.