Heat transfer and pressure results of an inline array of round jets impinging on a staggered array of dimples are reported with the consideration of various geometric and parametric effects; results are normalized against flat plate data. The heat transfer was measured by using transient wideband liquid crystal method. The geometrical configurations considered were crossflow (or spent-air exit) scheme, dimple geometries, and impinging positions. Three crossflow schemes were tested such as one-way, two-way, and free exits. These led to the idea of the coupling effects of impingement and channel flow depending on which one dominated. Hemispherical and cusped elliptical dimple shapes with the same wetted area were considered and found that both dimples showed the similarity in heat transfer results. Impinging positions on dimples and on flat portions adjacent to dimples were examined. Throughout the study, the pitch of the nozzle holes was kept constant at four jet diameters. The investigated parameters were Reynolds number (ReDj) ranged from 5000 to 11,500, jet-to-plate spacing (H∕Dj) varied from 1 to 12 jet diameters, dimple depths (d∕Dd) of 0.15, 0.25, and 0.29, and dimple curvature (Dj∕Dd) of 0.25, 0.50, and 1.15. The shallow dimples (d∕Dd=0.15) improved heat transfer significantly by 70% at H∕Dj=2 compared to that of the flat surface, while this value was 30% for the deep ones (d∕Dd=0.25). The improvement also occurred to the moderate and high Dj∕Dd. The total pressure was a function of ReDj and H∕Dj when H∕Dj<2, but it was independent of the target plate geometry. The levels of the total pressure loss of the dimpled plates werenot different from those of the flat surface under the same setup conditions. Wall static pressure was measured by using static taps located across each plate. ReDj and H∕Dj affected the level of the static pressure while the dimple depth influenced the stagnation peaks, and the crossflow scheme affected the shape of the peaks.
Jet impingement on a dimpled surface is investigated experimentally for Reynolds numbers in the range 5000–11500, and jet-to-plate spacing from 1 to 12 jet-diameters. These include spatially resolved local Nusselt numbers with impingement both on the dimpled itself and on the flat portion between dimples. Two dimple geometries are considered: hemispherical dimples and double or cusp elliptical dimples. All experiments were carried under maximum crossflow that is the spent air exits along one way. At the narrow jet-to-plate spacing such as H/Dj=2, a vigorous recirculation occurred, which prevented the dimpled plate to enhance heat transfer. The effect of impinging jet positions meant that impinging onto dimples generated more and higher energetic vortices, and this led to better heat transfer performance. Cusped elliptical dimples increase the heat transfer compared to a flat plate less than the hemispherical geometry. The influence of dimple depth was also considered, the shallower dimple, d/Dd=0.15, improves significantly the heat transfer by 64% compared to that of the flat surface impingement at H/Dj=4; this result was 38% higher than that for a deeper dimple of d/Dd=0.25. The very significant increase in average heat transfer makes dimple surface impingement a candidate for cooling applications. Detailed pressure measurements will form a second part of this paper, however, plenum pressure measurements are illustrated here as well as a surface pressure measurement on both streamwise and spanwise directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.