The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night1–3. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and while rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes4, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism, and insulin signaling is delayed in circadian mutant mice, and both Clock5,6 and Bmal17 mutants exhibit impaired glucose tolerance, reduced insulin secretion, and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival, and synaptic vesicle assembly. Remarkably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger onset of diabetes mellitus.
Spinal cord injury (SCI), a devastating neurological impairment, ubiquitously imposes a long-term psychological stress and high socioeconomic burden for the suffers and their family. To date, recent researchers have paid arousing attention to white matter injury and uncovering the underlying mechanism post-SCI. Ferroptosis, to our knowledge, has been revealed to be associated with diverse diseases including stroke, cancer, and kidney degeneration. However, its role in white matter damage after SCI remains unclear. Ferrostatin-1, a potent inhibitor of ferroptosis, has been illustrated to curb ferroptosis in neurons, subsequently improve functional recovery after traumatic brain injury (TBI). But whether it inhibits white matter injury post-SCI is still unknown. Here, our results indicated that ferroptosis played an important role in the secondary white matter injury following SCI and ferrostatin-1 could reduce iron and reactive oxygen species (ROS) accumulation, downregulate the ferroptosis-related genes and its products of IREB2 and PTGS2 to further inhibit ferroptosis in oligodendrocyte progenitor cells (OPCs), nally reducing white matter injury and promoting functional recovery following SCI in rats, which enlarges the therapeutic scope for ferrostatin-1 and deciphers the potential mechanism of white matter damage after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.