The impact of protons on metallic nanoparticles (MNPs) produces the potent release of MNP-induced secondary electrons and characteristic x-rays. To determine the ability of secondary radiations to enhance proton treatment, the therapeutic irradiation of tumors was investigated in mice receiving 100-300 mg MNPs/kg intravenously prior to single dose, 10-41 Gy, proton irradiation. A proton beam was utilized to irradiate nanoparticles with a single Bragg peak set to occur inside a tumor volume (fully absorbed) or to occur after the beam had traversed the entire body. The dose-dependent increase in complete tumor regression (CTR) was 37-62% in the fully-absorbed irradiation group or 50-100% in the traversing irradiation group, respectively, compared with the proton-alone control mice (p < 0.01). One year survival was 58-100% versus 11-13% proton alone. The dose-dependent increase of intracellular reactive oxygen species level was 12-36% at 10 Gy compared with the proton-alone control cell. Therapeutic effective drug concentration that led to 100% CTR with a proton dose of 31 Gy was measured either 41 µg Au/g tissue or 59 µg Fe/g tissue. MNP-based proton treatment increased not only percent CTR and survival in vivo but also ROS generation in vitro, suggesting tumor dose enhancement from secondary radiation as one potent pathway of therapeutic enhancement.
This study confirmed that bifurcated distal biceps tendon insertion is not a rare anatomical variation, showed by recent investigations, and found that the short head of the distal biceps tendon was inserted more anteriorly than the long head on the radial tuberosity. These findings may allow functional independence and isolated rupture of each portion. It can make correct diagnosis possible and allow for a more anatomical orientation of the tendon during surgical repair.
Mounting evidence suggests that lipoxygenase (LO)-catalyzed products may play a key role in the development and progression of human cancers. In this study, we analyzed the effects of a 5-LO inhibitor, which inhibits the conversion of arachidonic acid to leukotrienes, on cell proliferation and apoptosis in human malignant glioma cells, including 5-LO-expressing cells U-87MG, A172 and 5-LO non-expressing cell U373. Growth of U-87MG and A172 cells, but not that of U373 cells, was inhibited in a dose-dependent manner by treatment with MK886. Similarly, specific 5-LO silencing by small interfering RNA reduced the growth of U-87MG and A172 cells. MK886 treatment reduced 5-LO activity independently of 5-LO-activating protein (FLAP) in human malignant glioma cells. MK886 treatment also induced cell apoptosis, measured by DNA fragmentation and nuclear condensation, in U-87MG and A172 cells but there were no signs in U373 cells. Moreover, this treatment reduced ERKs phosphorylation and anti-apoptotic molecule Bcl-2 expression, and increased Bax expression in U-87MG and A172 cells. In summary, our results show there is a link between the 5-LO expression status and the extent of MK886-inhibited cell proliferation and apoptosis. Taken together, this study suggest that 5-LO is a possible target for treating patients with gliomas, and 5-LO inhibition might be potent therapy for patients with 5-LO-expressing malignant gliomas.
BackgroundX-rays are known to interact with metallic nanoparticles, producing photoelectric species as radiosensitizing effects, and have been exploited in vivo mainly with gold nanoparticles. The purpose of this study was to investigate the potential of sensitizing effect of iron oxide nanoparticles for photon activated therapy.MethodsX-rays photon activated therapy (PAT) was studied by treating CT26 tumor cells and CT26 tumor-bearing mice loaded with 13-nm diameter FeO NP, and irradiating them at 7.1 keV near the Fe K-edge using synchrotron x-rays radiation. Survival of cells was determined by MTT assay, and tumor regression assay was performed for in vivo model experiment. The results of PAT treated groups were compared with x-rays alone control groups.ResultsA more significant reduction in viability and damage was observed in the FeO NP-treated irradiated cells, compared to the radiation alone group (p < 0.04). Injection of FeO NP (100 mg/kg) 30 min prior to irradiation elevated the tumor concentration of magnetite to 40 μg of Fe/g tissue, with a tumor-to-muscle ratio of 17.4. The group receiving FeO NP and radiation of 10 Gy showed 80% complete tumor regression (CTR) after 15–35 days and relapse-free survival for up to 6 months, compared to the control group, which showed growth retardation, resulting in 80% fatality. The group receiving radiation of 40 Gy showed 100% CTR in all cases irrespective of the presence of FeO NP, but CTR was achieved earlier in the PAT-treated group compared with the radiation alone group.ConclusionsAn iron oxide nanoparticle enhanced therapeutic effect with relatively low tissue concentration of iron and 10 Gy of monochromatic X-rays. Since 7.1 keV X-rays is attenuated very sharply in the tissue, FeO NP-PAT may have promise as a potent treatment option for superficial malignancies in the skin, like chest wall recurrence of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.