A novel iron-modified biochar (FMBC) derived from rice straw was synthesized using FeCl3 modification for efficient As(V) removal from aqueous solution. FTIR and SEM-EDX analyses were carried out to determine the mechanism involved in the removal process and also demonstrated that Fe had loaded successfully on the surface of modified biochar. The iron-modified biochar showed higher arsenic removal ability than the raw biochar. The iron-modified biochar showed a maximum adsorption with an initial solution pH of 5.0. Moreover, for the tested biochar, the As(V) removal kinetics data were well fitted by the pseudo-second-order model. Furthermore, the As(V) removal data upon being well fitted by the Langmuir model showed the maximal removal capacity of 28.49 mg/g. The simple preparation process and high adsorption performance suggest that the iron-modified biochar derived from rice straw could be served as an effective, inexpensive, and environmentally sustainable adsorbent to replace typical granular activated carbon (AC) for As(III) removal from aqueous solution.
This In this study, the Ca-Al layered double hydroxide was used as a potential adsorbent for the removal of Congo red from aqueous solutions. The effects of Initial concentration and contact time on the adsorption properties of Congo red by Ca-Al LDHs were studied. The removal rate of Conge red reached to 59.416 mg/g under room temperature with 0.2g of adsorbent, initial concentration of 50 ppm, adsorption time of 210 min, shaking speed of 90r/min. The experimental equilibrium data for the removal of Congo red were evaluated by various isotherm models. The pseudo-second-order kinetic models were found to fit the adsorption kinetics, and the equilibrium data were appropriately fitted to Langmuir and Freundlich model adsorption isotherm.
The use of inorganic layer compounds as adsorbents for organic dyes in water treatment is of increasing interest. In this study, an attempt
is made for the synthesis of Mg/Al LDHs by the hydrothermal method. The synthesis temperature was found to significantly affect to the
structure of layered double hydroxides (LDHs), as pointed out by FT-IR analysis. In addition, an adsorption capacity of the synthesized
LDHs against Congo red in aqueous solutions was investigated and also compared the adsorption results with other dyes such as methylene
blue and methyl orange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.