Female AAS users practice polypharmacy. Female AAS users are more likely to have qualified for substance-dependence disorder, have been diagnosed with a psychiatric illness, and have a history of sexual abuse than both male AAS users and female non-AAS users.
Aim: To investigate the effect of nitroglycerin (NTG) on cell proliferation and osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSC) and its mechanisms. Methods: Primary HBMSC were cultured in osteogenic differentiation medium consisting of phenol red-free α-minimum essential media plus 10% fetal bovine serum (dextran-coated charcoal stripped) supplemented with 10 nmol/L dexamethasone, 50 mg/L ascorbic acid, and 10 mmol/L β-glycerophosphate for inducing osteoblastic differentiation. The cells were treated with NTG (0.1-10 µmol/L) alone or concurrent incubation with different nitric oxide synthase (NOS) inhibitors. Nitric oxide (NO) production was measured by using a commercial NO kit. Cell proliferation was measured by 5-bromodeoxyuridine (BrdU) incorporation. The osteoblastic differentiation of HBMSC culture was evaluated by measuring cellular alkaline phosphatase (ALP) activity and calcium deposition, as well as osteoblastic markers by real-time RT-PCR. Results: The treatment of HBMSC with NTG (0.1-10 µmol/L) led to a dose-dependent increase of NO production in the conditional medium. The release of NO by NTG resulted in increased cell proliferation and osteoblastic differentiation of HBMSC, as evidenced by the increment of the BrdU incorporation, the induction of ALP activity in the early stage, and the calcium deposition in the latter stage. The increment of NO production was also correlated with the upregulation of osteoblastic markers in HBMSC cultures. However, the stimulatory effect of NTG (10 µmol/L) could not be abolished by either N G -nitro-L-arginine methyl ester, an antagonist of endothelial NOS, or 1400W, a selective blocker of inducible NOS activity. Conclusion: NTG stimulates cell proliferation and osteoblastic differentiation of HBMSC through a direct release of NO, which is independent on intracellular NOS activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.