We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scene's 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF performs well on unsupervised 3D scene segmentation, novel view synthesis, and scene editing on three datasets. * * Project website: https://kovenyu.com/uorf/ Preprint. Under review.
Large-scale photorealistic datasets of indoor scenes, with ground truth geometry, materials and lighting, are important for deep learning applications in scene reconstruction and augmented reality. The associated shape, material and lighting assets can be scanned or artist-created, both of which are expensive; the resulting data is usually proprietary. We aim to make the dataset creation process for indoor scenes widely accessible, allowing researchers to transform casually acquired scans to large-scale datasets with high-quality ground truth. We achieve this by estimating consistent furniture and scene layout, ascribing high quality materials to all surfaces and rendering images with spatially-varying lighting consisting of area lights and environment maps. We demonstrate an instantiation of our approach on the publicly available ScanNet dataset. Deep networks trained on our proposed dataset achieve competitive performance for shape, material and lighting estimation on real images and can be used for photorealistic augmented reality applications, such as object insertion and material editing. Importantly, the dataset and all the tools to create such datasets from scans will be released, enabling others in the community to easily build large-scale datasets of their own. All code, models, data, dataset creation tool will be publicly released on our project page.Preprint. Under review.
We present a method, Neural Radiance Flow (NeRFlow), to learn a 4D spatial-temporal representation of a dynamic scene from a set of RGB images. Key to our approach is the use of a neural implicit representation that learns to capture the 3D occupancy, radiance, and dynamics of the scene. By enforcing consistency across different modalities, our representation enables multi-view rendering in diverse dynamic scenes, including water pouring, robotic interaction, and real images, outperforming state-of-the-art methods for spatial-temporal view synthesis. Our approach works even when inputs images are captured with only one camera. We further demonstrate that the learned representation can serve as an implicit scene prior, enabling video processing tasks such as image super-resolution and de-noising without any additional supervision 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.