We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature symmetric phase to a narrow region of intermediate "nematic" phase, and then to a low temperature spin ordered phase. Identifying phases by their broken symmetries, these phases correspond precisely to the sequence of structural (tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron scattering studies of LaOFeAs. The structural transition can thus be identified with the existence of incipient ("fluctuating") magnetic order.
We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the noninteracting level, we show that a QBCP exists and is topologically stable for a Berry flux +/-2pi if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak short-range repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.
We discuss a topological classification of insulators and superconductors in the presence of both (nonspatial) discrete symmetries in the Altland-Zirnbauer classification and spatial reflection symmetry in any spatial dimensions. By using the structure of bulk Dirac Hamiltonians of minimal matrix dimensions and explicit constructions of topological invariants, we provide the complete classification, which still has the same dimensional periodicities with the original Altland-Zirnbauer classification. The classification of reflectionsymmetry-protected topological insulators and superconductors depends crucially on the way reflection symmetry operation is realized. When a boundary is introduced, which is reflected into itself, these nontrivial topological insulators and superconductors support gapless modes localized at the boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.