A dynamic Gaussian process regression based partial leastsquares (D-GPR-PLS) model is proposed to improve estimation ability and compared to the conventional nonlinear PLS. Considering the strong ability of GPR in nonlinear process modeling, this method is used to build a nonlinear regression between each pair of latent variables in the partial least-squares. In addition, augmented matrices are embedded into the D-GPR-PLS model to obtain better prediction accuracy in nonlinear dynamic processes. To evaluate the modeling performance of the proposed method, two simulated cases and a real industrial process based on wastewater treatment processes (WWTPs) are considered. The simulated cases use data from two high fidelity simulators: benchmark simulation model no. 1 and its long-term version. The second study uses data from a real biological wastewater treatment process. The results show the superiority of D-GPR-PLS in modeling performance for both data sets. More specifically, in terms of the prediction for effluent chemical oxygen demand of the real WWTP data, the value of the root-mean-square error is decreased by 31%, 16%, and 52%, respectively, in comparison with that for linear PLS, quadratic PLS, and least-squares support vector machine based PLS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.