DNA methylation regulates eukaryotic gene expression and is extensively reprogrammed during animal development. However, whether developmental methylation reprogramming during the sporophytic life cycle of flowering plants regulates genes is presently unknown. Here we report a distinctive gene-targeted RNA-directed DNA methylation (RdDM) activity in the Arabidopsis thaliana male sexual lineage that regulates gene expression in meiocytes. Loss of sexual-lineage-specific RdDM causes mis-splicing of the MPS1 gene (also known as PRD2), thereby disrupting meiosis. Our results establish a regulatory paradigm in which de novo methylation creates a cell-lineage-specific epigenetic signature that controls gene expression and contributes to cellular function in flowering plants.
SUMMARY The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.
HIV-1 has high mutation rates and exists as mutant swarms within the host. Rapid evolution of HIV-1 allows the virus to outpace the host immune system, leading to viral persistence. Approaches to target immutable components are needed to clear HIV-1 infection. Here, we report that the CARD8 inflammasome senses HIV-1 protease activity. HIV-1 can evade CARD8 sensing because its protease remains inactive in infected cells prior to viral budding. Premature intracellular activation of the viral protease triggered CARD8 inflammasome-mediated pyroptosis of HIV-1-infected cells. This strategy led to the clearance of latent HIV-1 in patient CD4+ T cells after viral reactivation. Thus, our study identifies CARD8 as an inflammasome sensor of HIV-1, which holds promise as a strategy for clearance of persistent HIV-1 infection.
Cytosine DNA methylation regulates the expression of eukaryotic genes and transposons. Methylation is copied by methyltransferases after DNA replication, which results in faithful transmission of methylation patterns during cell division and, at least in flowering plants, across generations. Transgenerational inheritance is mediated by a small group of cells that includes gametes and their progenitors. However, methylation is usually analyzed in somatic tissues that do not contribute to the next generation, and the mechanisms of transgenerational inheritance are inferred from such studies. To gain a better understanding of how DNA methylation is inherited, we analyzed purified Arabidopsis thaliana sperm and vegetative cellsthe cell types that comprise pollen-with mutations in the DRM, CMT2, and CMT3 methyltransferases. We find that DNA methylation dependency on these enzymes is similar in sperm, vegetative cells, and somatic tissues, although DRM activity extends into heterochromatin in vegetative cells, likely reflecting transcription of heterochromatic transposons in this cell type. We also show that lack of histone H1, which elevates heterochromatic DNA methylation in somatic tissues, does not have this effect in pollen. Instead, levels of CG methylation in wild-type sperm and vegetative cells, as well as in wild-type microspores from which both pollen cell types originate, are substantially higher than in wild-type somatic tissues and similar to those of H1-depleted roots. Our results demonstrate that the mechanisms of methylation maintenance are similar between pollen and somatic cells, but the efficiency of CG methylation is higher in pollen, allowing methylation patterns to be accurately inherited across generations.DNA methylation | epigenetic inheritance | histone H1 | pollen C ytosine methylation is a covalent DNA modification that regulates transcription in eukaryotes (1). The highest levels of methylation in plant and animal genomes are typically located within symmetric CG dinucleotides (1). Methylation in this sequence context is virtually ubiquitous in plant transposable elements (TEs), which are transcriptionally silenced by methylation, but also occurs within many genes without disrupting their expression (1, 2). CG methylation is catalyzed by the Dnmt1 methyltransferase family, called MET1 in plants (1, 2). MET1 restores full methylation of hemimethylated CG dinucleotides generated by DNA replication, thereby perpetuating methylation patterns after cell division (1, 2). This maintenance activity is thought to allow DNA methylation to carry epigenetic information-and influence gene expression and phenotype-across generations (3, 4). The nature of this mechanism predicts that imperfect maintenance of CG methylation should lead to complete loss as methylation is diluted during each cell division, so that the only stable methylation states for a CG site in a population of cells should be fully methylated or fully unmethylated. However, the methylation levels measured at Arabidopsis thaliana CG site...
SnSe displaying a photothermal conversion capability and pyroelectric conversion capability for efficient treatment of tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.