2019 novel coronavirus (2019-nCoV) is widespread in China and other countries. The target of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV) is angiotensin-converting enzyme 2 (ACE2) positive cells. ACE2 is present in the salivary gland duct epithelium, and thus it could be the target of 2019-nCoV and SARS-CoV. SARS-CoV-related animal model experiments show that it can infect the epithelial cells on the salivary gland duct in Chinese rhesus macaques by targeting ACE2. Clinical studies confirmed that 2019-nCoV and SARS-CoV could be detected in saliva of human patients. We hypothesize that the infection of 2019-nCoV and SARS-CoV will lead to inflammatory pathological lesions in patients' target organs, and possibly inflammatory lesions in salivary glands. 2019-nCoV may cause acute sialoadenitis in the acute phase of infection. After the acute phase, chronic sialoadenitis may be caused by fibrosis repairment. Although there was no direct evidence to prove this, the available indirect evidence indicates a high probability of our hypothesis.
BackgroundWilms tumor tends to grow into vena cava, even invade atrium, which increased operating difficulty and frequency of surgical complications.MethodsForty-two patients of Wilms tumor with intravenous thrombus were retrospective studied. The diagnosis and therapy were discussed according to the medical records and interrelated literatures.ResultsForty-two children with thrombus were diagnosed by computed tomography and 41 cases by ultrasound simultaneously. 36 children had received preoperative chemotherapy. Surgical resection was performed in all patients. Cardiopulmonary bypass was used for the removal of the intra-atrial thrombus in 5 patients. There were no surgical complications occurred. The patients received chemotherapy and radiotherapy according to clinical staging by National Wilms’ Tumor Study (NWTS)-4 or NWTS-5. 34 patients were successfully followed up, 32 patients survive at present, including one who has been followed up more than 20 years since operation.ConclusionStandardized sequential treatment, including preoperative chemotherapy and radiotherapy, nephrectomy combining resection of thrombus, postoperative adjuvant therapy, is the mainstay of treatment of Wilms tumor with intravenous thrombus.
Background: The Wnt/β-catenin pathway is involved in the osteogenic differentiation of human adipose-derived stem cells (hASCs) under cyclic strain. Very little is known about the role of microRNAs in these events. Methods: Cells were obtained using enzyme digestion methods, and proliferation was detected using Cell Counting Kit 8. Cell cycles and immunophenotypes were detected by flow cytometry. The multilineage potential of hASCs was induced by induction media. Cyclic strain was applied to hASCs (0.5 Hz, 2 h/day, 6 days) to induce osteogenic differentiation and miRNA changes. Bioinformatic and dual-luciferase analyses confirmed lymphoid enhancer factor 1 (LEF1) as a potential target of let-7i-3p. The effect of let-7i-3p on LEF1 in hASCs transfected with a let-7i-3p mimic and inhibitor was analyzed by immunofluorescence. hASCs were transfected with a let-7i-3p mimic, inhibitor, or small interfering RNA (siRNA) against LEF1 and β-catenin. Quantitative real-time PCR (qPCR) and western blotting were performed to examine the osteogenic markers and Wnt/β-catenin pathway at the mRNA and protein levels, respectively. Immunofluorescence and western blotting were performed to confirm the activation of the Wnt/β-catenin pathway. Results: Flow cytometry showed that 82.12% ± 5.83% of the cells were in G1 phase and 17.88% ± 2.59% of the cells were in S/G2 phase; hASCs were positive for CD29, CD90, and CD105. hASCs could have the potential for osteogenic, chondrogenic, and adipogenic differentiation. MicroRNA screening via microarray showed that let-7i-3p expression was decreased under cyclic strain. Bioinformatic and dual-luciferase analyses confirmed that LEF1 in the Wnt/β-catenin pathway was the target of let-7i-3p. Under cyclic strain, the osteogenic differentiation of hASCs was promoted by overexpression of LEF1and β-catenin and inhibited by overexpression of let-7i-3p. hASCs were transfected with let-7i-3p mimics and inhibitor. Gain-or loss-of-function analyses of let-7i-3p showed that the osteogenic differentiation of hASCs was promoted by decreased let-7i-3p expression and inhibited by increased let-7i-3p expression. Furthermore, high LEF1 expression inactivated the Wnt/β-catenin pathway in let-7i-3p-enhanced hASCs. In contrast, let-7i-3p inhibition activated the Wnt/β-catenin pathway. Conclusions: Let-7i-3p, acting as a negative regulator of the Wnt/β-catenin pathway by targeting LEF1, inhibits the osteogenic differentiation of hASCs under cyclic strain in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.