The evolution of performance degradation has become a major obstacle to the long-life operation of the Solid Oxide Fuel Cell (SOFC) system. The feasibility of employing degradation resistance to assess the State of Health (SOH) is proposed and verified. In addition, a real-time Unscented Kalman Filter (UKF) based SOH estimation method is further proposed to eliminate the disturbance of calculating the SOH directly utilizing measurement and electric balance model. The results of real-time SOH estimation with an UKF under constant and varying load conditions demonstrate the feasibility and effectiveness of the SOFC performance degradation assessment method.
Solid oxide fuel cells (SOFCs) have complex characteristics, including a long time delay, strong thermoelectrical coupling, and multiple constraints. This leads to multiple control objectives, such as efficiently controlling the power output of the stack and considering the temperature constraints of multiple high-temperature components. Dealing with multiple objectives at the same time brings challenges to the design of SOFC system control. Based on the verified high-precision system model and aiming to achieve fast response, high efficiency, and thermal management, this paper first designs a generalized predictive controller (GPC) to realize the global optimization of the system. Then, through the actual test of the individual reformer, the reformer characteristics are analyzed, the standby controller to control the reformer temperature is designed, and the thermoelectric cooperative controller is constricted with the GPC. The results show that while fast power tracking, high efficiency, and multiple temperature constraints are realized by the controller, the temperature and methane conversion rate (MCR) of the reformer are stably controlled, providing a basis for further practical experiments of the SOFC system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.