Because of multi-timescale characteristics and gas transmission delays, the thermal electrical cooperative control of solid oxide fuel cells is a complex and difficult issue. We have used modeling, analysis and optimization of a solid oxide fuel cell system control to guarantee a high efficiency and temperature safety during steady-state and power switch transients. An analysis-based optimization method that applies to discrete optimization problem with constraints is proposed to obtain optimal operating points with a maximum efficiency and to satisfy temperature constraints. Artificial neural-network models that were identified from a validated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.