The design and synthesis of hollow-nanostructured transition metal oxide-based anodes is of great importance for long-term operation of lithium ion batteries. Herein, we report a two-step calcination strategy to fabricate hollow Co3O4 nanoparticles embedded in a N,S-co-doped reduced graphene oxide framework. In the first step, core–shell-like Co@Co3O4 embedded in N,S-co-doped reduced graphene oxide is synthesized by pyrolysis of a Co-based metal organic framework/graphene oxide precursor in an inert atmosphere at 800 °C. The designed hollow Co3O4 nanoparticles with an average particle size of 25 nm and wall thickness of about 4–5 nm are formed by a further calcination process in air at 250 °C via the nanoscale Kirkendall effect. Both micropores and mesopores are generated in the HoCo3O4/NS-RGO framework. Benefiting from the hierarchical porous structure of the hollow Co3O4 and the co-doping of nitrogen and sulfur atoms in reduced graphene oxide, the thus-assembled battery exhibits a high specific capacity of 1590 mAh g–1 after 600 charge–discharge cycles at 1 A g–1 and a promising rate performance from 0.2 to 10 A g–1.
Pregnancy is a physiological process with pronounced hormonal fluctuations in females, and relatively little is known regarding how pregnancy influences the ecological shifts of supragingival microbiota. In this study, supragingival plaques and salivary hormones were collected from 11 pregnant women during pregnancy (P1, ≤14 weeks; P2, 20–25 weeks; P3, 33–37 weeks) and the postpartum period (P4, 6 weeks after childbirth). Seven non-pregnant volunteers were sampled at the same time intervals. The microbial genetic repertoire was obtained by 16S rDNA sequencing. Our results indicated that the Shannon diversity in P3 was significantly higher than in the non-pregnant group. The principal coordinates analysis showed distinct clustering according to gestational status, and the partial least squares discriminant analysis identified 33 genera that may contribute to this difference. There were differentially distributed genera, among which Neisseria, Porphyromonas, and Treponema were over-represented in the pregnant group, while Streptococcus and Veillonella were more abundant in the non-pregnant group. In addition, 53 operational taxonomic units were observed to have positive correlations with sex hormones in a redundancy analysis, with Prevotella spp. and Treponema spp. being most abundant. The ecological events suggest that pregnancy has a role in shaping an at-risk-for-harm microbiota and provide a basis for etiological studies of pregnancy-associated oral dysbiosis.
Colorectal cancer (CRC) is the third most common cancer worldwide. Its incidence is still increasing, and the mortality rate is high. New therapeutic and prognostic strategies are urgently needed. It became increasingly recognized that the gut microbiota composition differs significantly between healthy people and CRC patients. Thus, identifying the difference between gut microbiota of the healthy people and CRC patients is fundamental to understand these microbes' functional roles in the development of CRC. We studied the microbial community structure of a CRC metagenomic dataset of 156 patients and healthy controls, and analyzed the diversity, differentially abundant bacteria, and co-occurrence networks. We applied a modified zero-inflated lognormal (ZIL) model for estimating the relative abundance. We found that the abundance of genera: Anaerostipes, Bilophila, Catenibacterium, Coprococcus, Desulfovibrio, Flavonifractor, Porphyromonas, Pseudoflavonifractor , and Weissella was significantly different between the healthy and CRC groups. We also found that bacteria such as Streptococcus, Parvimonas, Collinsella, and Citrobacter were uniquely co-occurring within the CRC patients. In addition, we found that the microbial diversity of healthy controls is significantly higher than that of the CRC patients, which indicated a significant negative correlation between gut microbiota diversity and the stage of CRC. Collectively, our results strengthened the view that individual microbes as well as the overall structure of gut microbiota were co-evolving with CRC.
An aza‐BODIPY dye 1 bearing two hydrophobic fan‐shaped tridodecyloxybenzamide pendants through 1,2,3‐triazole linkages was synthesized by a click reaction and characterized. 1H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H‐bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect of the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. Biphasic aggregation pathways of dye 1, leads to the formation of off‐pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H‐aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature‐modulated successive cooling–heating cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.