This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
ARTICLE HISTORY
An aza‐BODIPY dye 1 bearing two hydrophobic fan‐shaped tridodecyloxybenzamide pendants through 1,2,3‐triazole linkages was synthesized by a click reaction and characterized. 1H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H‐bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect of the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. Biphasic aggregation pathways of dye 1, leads to the formation of off‐pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H‐aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature‐modulated successive cooling–heating cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.