In recent years, many new technologies have been used in indoor positioning. In 2016, IEEE 802.11-2016 created a Wi-Fi fine timing measurement (FTM) protocol, making Wi-Fi ranging more robust and accurate, and providing meter-level positioning accuracy. However, the accuracy of positioning methods based on the new ranging technology is influenced by non-line-of-sight (NLOS) errors. To enhance the accuracy, a positioning method with LOS (line-of-sight)/NLOS identification is proposed in this paper. A Gaussian model has been established to identify NLOS signals. After identifying and discarding NLOS signals, the least square (LS) algorithm is used to calculate the location. The results of the numerical experiments indicate that our algorithm can identify and discard NLOS signals with a precision of 83.01% and a recall of 74.97%. Moreover, compared with the traditional algorithms, by all ranging results, the proposed method features more accurate and stable results for indoor positioning.
The human body has a great influence on Wi-Fi signal power. A fixed K value leads to localization errors for the K-nearest neighbor (KNN) algorithm. To address these problems, we present an adaptive weighted KNN positioning method based on an omnidirectional fingerprint database (ODFD) and twice affinity propagation clustering. Firstly, an OFPD is proposed to alleviate body’s sheltering impact on signal, which includes position, orientation and the sequence of mean received signal strength (RSS) at each reference point (RP). Secondly, affinity propagation clustering (APC) algorithm is introduced on the offline stage based on the fusion of signal-domain distance and position-domain distance. Finally, adaptive weighted KNN algorithm based on APC is proposed for estimating user’s position during online stage. K initial RPs can be obtained by KNN, then they are clustered by APC algorithm based on their position-domain distances. The most probable sub-cluster is reserved by the comparison of RPs’ number and signal-domain distance between sub-cluster center and the online RSS readings. The weighted average coordinates in the remaining sub-cluster can be estimated. We have implemented the proposed method with the mean error of 2.2 m, the root mean square error of 1.5 m. Experimental results show that our proposed method outperforms traditional fingerprinting methods.
This paper proposes a fusion indoor positioning method that integrates the pedestrian dead-reckoning (PDR) and geomagnetic positioning by using the genetic-particle filter (GPF) algorithm. In the PDR module, the Mahony complementary filter (MCF) algorithm is adopted to estimate the heading angles. To improve geomagnetic positioning accuracy and geomagnetic fingerprint specificity, the geomagnetic multi-features positioning algorithm is devised and five geomagnetic features are extracted as the single-point fingerprint by transforming the magnetic field data into the geographic coordinate system (GCS). Then, an optimization mechanism is designed by using gene mutation and the method of reconstructing a particle set to ameliorate the particle degradation problem in the GPF algorithm, which is used for fusion positioning. Several experiments are conducted to evaluate the performance of the proposed methods. The experiment results show that the average positioning error of the proposed method is 1.72 m and the root mean square error (RMSE) is 1.89 m. The positioning precision and stability are improved compared with the PDR method, geomagnetic positioning, and the fusion-positioning method based on the classic particle filter (PF).
WiFi-based indoor positioning methods have attracted extensive attention due to the wide installation of WiFi access points (APs). Recently, the WiFi standard was modified and introduced into a new two-way approach based on round trip time (RTT) measurement, which brings some changes for indoor positioning based on WiFi. In this work, we propose a WiFi RTT positioning method based on line of sight (LOS) identification and range calibration. Given the complexity of the indoor environment, we design a non-line of sight (NLOS) and LOS identification algorithm based on scenario recognition. The positioning scenario is recognized to assist NLOS and LOS distances identification, and gaussian process regression (GPR) is utilized to construct the scenario recognition model. Meanwhile, the calibration model for LOS distance is presented to correct the measuring distance and the scenario information is utilized to constrain the estimated position. When there is a positioning request, the positioning scenario is identified with the scenario recognition model, and LOS measuring distance is obtained based on the recognized scenario. The LOS range measurements are first calibrated and then utilized to estimate the position of the smartphone. Finally, the positioning scenario is used to constrain the estimation location to avoid it beyond the scenario. The experimental results show that the positioning effect of the proposed method is far better than that of the Least Squares (LS) algorithm, achieving a mean error (ME) of 0.862 m and root-mean-square error (RMSE) of 0.989 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.