With the explosive emergence of computationintensive and latency-sensitive applications, data processing could be envisioned to perform closer to the data source. Similar to edge and fog computing, dispersed computing is considered as a complementary computing paradigm, which can excavate potential computation resources in the network to further bring the computation to users, and serve as a supplement for sharing computing pressure when the edge is overloaded. In this paper, we first make full use of idle and geographically dispersed computation resources via task offloading, contributing to conserve energy for mobile devices. Specially, a dispersed computing offloading framework concerning the interests of users and network computation points is proposed. We further transform the initial problem into a multi-objective optimization problem subject to latency and resource constraints. To tackle such a complex problem, an energy-saving bilateral matching algorithm is designed to obtain the optimal task offloading strategy. The simulation results demonstrate that our proposed algorithm can outperform the benchmark schemes in terms of user fairness and can achieve a relatively balanced energy cost ratio. Furthermore, comparative experiments with edge computing are implemented in Amber Response and Disaster Relief scenarios respectively to reveal the advantages of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.