The interactions between dislocations (dislocations and deformation twins) and boundaries (grain boundaries, twin boundaries and phase interfaces) during deformation at ambient temperatures are reviewed with focuses on interaction behaviors, boundary resistances and energies during the interactions, transmission mechanisms, grain size effects and other primary influencing factors. The structure of boundaries, interactions between dislocations and boundaries in coarse-grained, ultrafine-grained and nano-grained metals during deformation at ambient temperatures are summarized, and the advantages and drawbacks of different in-situ techniques are briefly discussed based on experimental and simulation results. The latest studies as well as fundamental concepts are presented with the aim that this paper can serve as a reference in the interactions between dislocations and boundaries during deformation.
It is well known that the bulk nanostructured metallic materials generally exhibit high strength but poor ductility, which greatly hinders their applications. In most cases, material failures usually start from the surface. Therefore, the surface modification is crucial to improving the mechanical properties of metallic materials. The surface mechanical attrition treatment (SMAT) is one of the most effective surface modification methods. It can be used to manufacture gradient nanostructured materials that there is no interfaces between the surface and the coarse-grained matrix. Additionally, the gradient nanostructured metallic materials fabricated by SMAT exhibit a preferable combination of strength and ductility compared with conventional homogeneous materials. It is generally believed that the high strength of the SMAT-ed metallic materials is owing to the surface fine-grain strengthening. Whereas the improved ductility can be attributed to the coarse-grained matrix and the superior work hardening ability of the gradient structured (GS) materials.In this overview, the research progress of the GS metallic materials fabricated by SMAT is summarized. It mainly introduces the microstructure characteristics of the GS layer and the mechanical properties of GS metallic materials. Finally, in order to find the optimal match between the strength and ductility in the GS materials, the several factors affecting the mechanical properties of GS materials are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.