Texture evolutions and recrystallization texture features in warm-and cold-rolled sheets of high silicon electrical steel with two different initial microstructures (columnar-grained and equiaxed-grained microstructures) were investigated. The relationships between the recrystallization textures and the initial textures (the textures before rolling) of the samples were analyzed. The results showed that after annealing at 1073 K (800°C) for 1 hour, strong {100} recrystallization textures with volume fractions of more than 47 pct were obtained in the columnar-grained samples fabricated by warm and cold rolling along the growing direction of the columnar grains. While after rolling and annealing in the same processes, only 12.8 pct volume fractions of {100} recrystallization texture were revealed in the equiaxed-grained samples. The formation of strong {100} recrystallization texture in the annealed sheets of high silicon electrical steel with initial columnar grains was attributed to the favorable texture inheritance of the initial texture during rolling and annealing. The columnar grains of strong near {100}h001i ({100}h001i~{310}h001i) orientation in the samples before rolling were transferred into deformed grains with orientations such as {100}h011i and {100}h012i. after rolling. Afterwards, these deformed grains were further transferred into {100} oriented recrystallized grains, which formed strong {100} recrystallization texture in the annealed sheets and exhibited preferable soft magnetic properties.