Batch process generally has varying dynamic characteristic that causes low fault detection rate and high false alarm rate, and it is necessary and urgent to monitor batch process. This paper proposes a global enhanced multiple neighborhoods preserving embedding based fault detection strategy for dynamic batch process. Firstly, the angle neighbor is defined and selected to compensate for the insufficient expression for the spatial similarity of samples only by using the distance neighbor, and the time neighbor is introduced to describe the time correlations between samples. These three types of neighbors can fully characterize the similarity of the samples in time and space. Secondly, considering the minimum reconstruction error and the order information of three types of neighbors, an enhanced objective function is constructed to prevent the loss of order information when neighborhood preserving embedding (NPE) calculates the reconstruction weights. Furthermore, the enhanced objective function and a global objective function are organically combined to extract both global and local features, to describe process dynamics and visualize process data in a low-dimensional space. Finally, a monitoring index based on support vector data description is constructed to eliminate adverse effects of non-Gaussian data for monitoring performance. The advantages of the proposed method over principal component analysis, neighborhood preserving embedding, dynamic principal component analysis and time NPE are demonstrated by a numerical example and the penicillin fermentation process simulation.
In most batch processes, the correlations of process variables present multi‐stage characteristic as the process progress and operating conditions change. The methods building a local model at each stage ignore the potential correlations among stages, resulting in poor quality prediction of batch process. To solve this problem, a batch process quality prediction method based on multi‐stage fusion regression network (MSFRN) is proposed. First, the affine propagation clustering (AP) algorithm is used to automatically divide the stages for batch process without relying on prior knowledge. Second, the input reconstruction error and quality prediction error are organically combined to develop a stacked isomorphic and quality‐driven autoencoder (SIQAE) for each stage, which fully extracts the quality‐related features for each stage while reducing the input cumulative loss. Then, the self‐attention mechanism is used to integrate the quality‐related features of each stage so as to obtain global features which consider the correlations among stages. Finally, the global features are input into the fully connected regression layer to predict the quality variables of batch process. The effectiveness of the proposed method was verified by applying on penicillin fermentation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.