Wireless sensor network (WSN) nodes are devices with limited power, and rational utilization of node energy and prolonging the network lifetime are the main objectives of the WSN’s routing protocol. However, irrational considerations of heterogeneity of node energy will lead to an energy imbalance between nodes in heterogeneous WSNs (HWSNs). Therefore, in this paper, a routing protocol for HWSNs based on the modified grey wolf optimizer (HMGWO) is proposed. First, the protocol selects the appropriate initial clusters by defining different fitness functions for heterogeneous energy nodes; the nodes’ fitness values are then calculated and treated as initial weights in the GWO. At the same time, the weights are dynamically updated according to the distance between the wolves and their prey and coefficient vectors to improve the GWO’s optimization ability and ensure the selection of the optimal cluster heads (CHs). The experimental results indicate that the network lifecycle of the HMGWO protocol improves by 55.7%, 31.9%, 46.3%, and 27.0%, respectively, compared with the stable election protocol (SEP), distributed energy-efficient clustering algorithm (DEEC), modified SEP (M-SEP), and fitness-value-based improved GWO (FIGWO) protocols. In terms of the power consumption and network throughput, the HMGWO is also superior to other protocols.
An innovational vane extruder made polymeric materials endure an elongation stress that was much larger than the shearing stress in the extrusion process. The operating principle of the vane extruder was completely different than that of conventional screw extruders. As the first stage of polymer processing in the vane extruder, the process of solids conveying was composed of feeding, compacting, and discharging. Most of the energy was consumed in the compacting process of polymer particulate solids in this stage. A mathematical model was developed to analyze the power consumption in the process. The model showed that the power consumption was mainly influenced by the structural parameters of the vane extruder, including the rotor diameter, eccentricity, and axial width of the vane unit. The analysis indicated that more energy was used to generate pressure in the vane extruder than in a screw extruder. The theoretical model was verified by the experimental results. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
The salp swarm algorithm (SSA) is a bio-heuristic optimization algorithm proposed in 2017. It has been proved that SSA has competitive results compared to several other well-known meta-heuristic algorithms on various optimization problem. However, like most meta-heuristic algorithms, SSA is prone to problems such as local optimal solution and a slow convergence rate. To solve these problems, a chaotic salp swarm algorithm based on opposition-based learning (OCSSA) is proposed. The application of opposition-based learning (OBL) guarantees a better convergence speed and better develops the search space. The chaotic local search (CLS) method is also introduced, which can improve the performance of the algorithm to obtain the global optimal solution. The performance of OCSSA is compared with that of the original SSA and some other meta-heuristic algorithms on 28 benchmark functions with unimodal or multimodal characteristics. The experimental results show that the performance of OCSSA, with an appropriate chaotic map, is better than or comparable with the SSA and other meta-heuristic algorithms.INDEX TERMS Salp swarm algorithm, global optimization, meta-heuristic algorithms, opposition-based learning, chaotic local search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.