The salp swarm algorithm (SSA) is a bio-heuristic optimization algorithm proposed in 2017. It has been proved that SSA has competitive results compared to several other well-known meta-heuristic algorithms on various optimization problem. However, like most meta-heuristic algorithms, SSA is prone to problems such as local optimal solution and a slow convergence rate. To solve these problems, a chaotic salp swarm algorithm based on opposition-based learning (OCSSA) is proposed. The application of opposition-based learning (OBL) guarantees a better convergence speed and better develops the search space. The chaotic local search (CLS) method is also introduced, which can improve the performance of the algorithm to obtain the global optimal solution. The performance of OCSSA is compared with that of the original SSA and some other meta-heuristic algorithms on 28 benchmark functions with unimodal or multimodal characteristics. The experimental results show that the performance of OCSSA, with an appropriate chaotic map, is better than or comparable with the SSA and other meta-heuristic algorithms.INDEX TERMS Salp swarm algorithm, global optimization, meta-heuristic algorithms, opposition-based learning, chaotic local search.
Wireless sensor networks (WSNs), one of the fundamental technologies of the Internet of Things (IoT), can provide sensing and communication services efficiently for IoT-based applications, especially energy-limited applications. Clustering routing protocol plays an important role in reducing energy consumption and prolonging network lifetime. The cluster formation and cluster head selection are the key to improving the performance of the clustering routing protocol. An energy-efficient routing protocol based on multi-threshold segmentation (EERPMS) was proposed in this paper to improve the rationality of the cluster formation and cluster heads selection. In the stage of cluster formation, inspired by multi-threshold image segmentation, an innovative node clustering algorithm was developed. In the stage of cluster heads selection, aiming at minimizing the network energy consumption, a calculation theory of the optimal number and location of cluster heads was established. Furthermore, a novel cluster head selection algorithm was constructed based on the residual energy and optimal location of cluster heads. Simulation results show that EERPMS can improve the distribution uniformity of cluster heads, prolong the network lifetime and save up to 64.50%, 58.60% and 56.15% network energy as compared to RLEACH, CRPFCM and FIGWO protocols respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.