Background: CXCL13 is an important chemotactic factor closely related to the biology of cancer cells. The presence work focused on exploring the significance of CXCL13 in prognosis prediction and analyzing the associations of CXCL13 with T cell function and immune infiltration in various cancers, especially ovarian cancer (OV).Purpose: CXCL13 is associated with prognosis, immune infiltration, and T cell failure of ovarian cancer.Methods: The Oncomine, GEPIA2 and HPA databases were utilized for analyzing CXCL13 levels within diverse cancers. The significance of CXCL13 in prognosis prediction was explored through Kaplan-Meier Plotter, TCGAportal, and GEPIA2. Meanwhile, the associations of CXCL13 with clinical stage, gene marker sets, and immune infiltration were examined through TISIDB, GEPIA2, and TIMER databases. Besides, CXCL13 was screened to analyze the biological processes (BPs) and KEGGs enriched by co-expression genes. The miRWalk database was employed for analyzing the gene-miRNA interaction network of CXCL13 within OV.Results: CXCL13 expression decreased in many cancers, which predicted the dismal survival of OV. CXCL13 upregulation was in direct proportion to the increased immune infiltration degrees of many functional T cells (like exhausted T cells) and immune cells. Additionally, some critical genes of exhausted T cells, such as TIM-3, PD-1, LAG3, TIGIT, GZMB, and CXCL13, were closely associated with CXCL13. Moreover, CXCL13 was related to immune response regulatory signaling pathway, leukocyte cell-cell adhesion, cell adhesion molecules (CAMs), and hematopoietic cell lineage. Conclusion: CXCL13 can serve as a biomarker to predict cancer prognosis, particularly OV. CXCL13 upregulation remarkably elevates the immune infiltration degrees of numerous immune cells, like mast cells, CD8+ T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, CXCL13 is suggested to be closely related to exhausted T cells, which may be used as a candidate regulating factor for T cell exhaustion within OV. Detecting CXCL13 levels contributes to prognosis prediction and CXCL13 regulation within exhausted T cells, which provides a new approach to maximizing the anti-OV efficacy of immunotherapy.