Purpose Sleep loss markedly affects the structure and function of the lacrimal gland and may cause ocular surface disease as a common public health problem. This study aims to investigate the circadian disturbance caused by sleep loss leading to dysfunction of extraorbital lacrimal glands (ELGs). Methods A mouse sleep deprivation (SD) model for sleep loss studies was built in C57BL/6J male mice. After four weeks, the ELGs were collected at three-hour intervals during a 24-hour period. The Jonckheere-Terpstra-Kendall algorithm was used to determine the composition, phase, and rhythmicity of transcriptomic profiles in ELGs. Furthermore, we compared the non-sleep-deprived and SD-treated mouse ELG (i) reactive oxygen species (ROS) by fluorescein staining, (ii) DNA damage by immunostaining for γ-H2Ax, and (iii) circadian migration of immune cells by immunostaining for CD4, CD8, γδ-TCR, CD64, and CX3CR1. Finally, we also evaluated (i) the locomotor activity and core body temperature rhythm of mice and (ii) the mass, cell size, and tear secretion of the ELGs. Results SD dramatically altered the composition and phase-associated functional enrichment of the circadian transcriptome, immune cell trafficking, metabolism, cell differentiation, and neural secretory activities of mouse ELGs. Additionally, SD caused the ROS accumulation and consequent DNA damage in the ELGs, and the ELG dysfunction caused by SD was irreversible. Conclusions SD damages the structure, function, and diurnal oscillations of ELGs. These results highlight comprehensive characterization of insufficient sleep–affected ELG circadian transcriptome that may provide a new therapeutic approach to counteract the effects of SD on ELG function.
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and a relative deficiency of insulin. This study aims to screen T2DM-related maker genes in the mouse extraorbital lacrimal gland (ELG) by LASSO regression.C57BLKS/J strain with leptin db/db homozygous mice (T2DM, n = 20) and wild-type mice (WT, n = 20) were used to collect data. The ELGs were collected for RNA sequencing. LASSO regression was conducted to screen marker genes with the training set. Five genes were selected from 689 differentially expressed genes by LASSO regression, including Synm, Elovl6, Glcci1, Tnks and Ptprt. Expression of Synm was downregulated in ELGs of T2DM mice. Elovl6, Glcci1, Tnks, and Ptprt were upregulated in T2DM mice. Area under receiver operating curve of the LASSO model was 1.000(1.000–1.000) and 0.980(0.929–1.000) in the training set and the test set, respectively. The C-index and the robust C-index of the LASSO model were 1.000 and 0.999, respectively, in the training set, and 1.000 and 0.978, respectively, in the test set. In the lacrimal gland of db/db mice, Synm, Elovl6, Glcci1, Tnks and Ptprt can be used as marker genes of T2DM. Abnormal expression of marker genes is related to lacrimal gland atrophy and dry eye in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.