The basolateral amygdala (BLA) and ventral hippocampal CA1 (vCA1) are cellularly and functionally diverse along their anterior-posterior and superficial-deep axes. Here, we find that anterior BLA (aBLA) and posterior BLA (pBLA) innervate deep-layer calbindin1-negative (Calb1−) and superficial-layer calbindin1-positive neurons (Calb1+) in vCA1, respectively. Photostimulation of pBLA-vCA1 inputs has an anxiolytic effect in mice, promoting approach behaviours during conflict exploratory tasks. By contrast, stimulating aBLA-vCA1 inputs induces anxiety-like behaviour resulting in fewer approaches. During conflict stages of the elevated plus maze task vCA1 Calb1+ neurons are preferentially activated at the open-to-closed arm transition, and photostimulation of vCA1 Calb1+ neurons at decision-making zones promotes approach with fewer retreats. In the APP/PS1 mouse model of Alzheimer's disease, which shows anxiety-like behaviour, photostimulating the pBLA-vCA1 Calb1+ circuit ameliorates the anxiety in a Calb1-dependent manner. These findings suggest the pBLA-vCA1 Calb1+ circuit from heterogeneous BLA-vCA1 connections drives approach behaviour to reduce anxiety-like behaviour.
Highlights d Phospho-tau is accumulated in DG GABAergic interneurons of AD patients and mice d Interneuron overexpressing human tau impairs adult hippocampal neurogenesis d Tau accumulation reduces GABA, disinhibits local circuits, and promotes astrogliosis d THIP, a d-GABA A R agonist, improves neurogenesis and cognition in AD mice
Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP–vCA1 connection. Optogenetic disruption of BLP–vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP–vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP–vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP–vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory.
Summary
To investigate the distribution and diversity of the pathogens associated with Fusarium crown rot in the Huanghuai wheat‐growing region (HHWGR) of China, we collected wheat samples with symptomatic stem bases from seven provinces in the HHWGR between 2013 and 2016. A total of 1196 isolates obtained from 222 locations were identified as 9 Fusarium species based on morphological and molecular identification. Of these pathogen species, F. pseudograminearum was the dominant species. Furthermore, F. sinensis was isolated from the disease specimens and tested for virulence to wheat. The result of the pathogenicity revealed that an intraspecific differentiation existed in F. pseudograminearum; sequence analysis of the EF‐1α gene showed that 194 F. pseudograminearum isolates were differentiated into two distinct clades which closed to the strains from Australia and China respectively, but neither pathogenicity nor EF‐1α sequence was related to the geographic origins of these isolates. However, universal rice primers‐polymerase chain reaction showed a correlation with the geographical origins of the 194 isolates, which were divided into eight subclusters, the level of genetic diversity was higher within a geographical population than among the different populations. The results of these analyses can be directly used to facilitate disease monitoring and development of control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.