Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i AC , which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R eff , which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i AC and R eff , we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 vs. 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i AC -cycle and R eff -cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i AC -cycle and R eff -cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10 cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM-KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.
This study evaluated the effects of thermocycling on the microtensile bond strength (microTBS) of one- and two-step self-etch adhesives (SEAs) to sclerotic dentin. Two adhesives, Clearfil S3 Bond (S3), a one-step self-etch adhesive (1-SEA), and Clearfil SE Bond (SE), a two-step self-etch adhesive (2-SEA), were applied on cervical lesions in human premolars with sclerotic or normal dentin. After adhesive application, the lesions were restored and built up using a resin composite (Clearfil AP-X). After 24 hours in water storage, the restored teeth were sectioned into 0.7 x 0.7 mm composite-dentin beams. The beams were then aged with 0, 5,000 or 10,000 thermocycles. The use of two adhesives, two substrate types and three thermocycling regimens yielded 12 experimental groups of 14-19 beams each. The beams were subsequently subjected to microTBS testing at a crosshead speed of 1 mm/minute and statistical analyses were computed with three-way ANOVA and Tukey's post hoc test at p < 0.05. Three-way ANOVA showed statistically significant effects on bonding effectiveness by lesion type, adhesive system, thermocycling or combinations of the adhesive system and thermocycling (p < 0.05). With sclerotic dentin, although S3 and SE provided comparable microTBS after 24 hours of water storage, S3 showed significantly lower microTBS than SE after thermocycling (p < 0.05). Regardless of lesion type, the microTBS for S3 decreased significantly after 5,000 or 10,000 thermocycles, while the microTBS for SE showed a significant decrease only after 10,000 thermocycles. Regardless of the extent of thermocycling, the microTBS values for either SE or S3 bonded to sclerotic dentin were significantly lower than to normal dentin (p < 0.05). The results suggested that thermocycling had a significant negative effect on the bond strength of the two SEAs tested. In contrast to 2-SEA, 1-SEA might not be a good choice for sclerotic dentin when seeking durability of the resin-dentin bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.