The differentially weighted operator-splitting Monte Carlo (DWOSMC) method is further developed to describe the droplet aerosol dynamic behaviors, including coagulation, deposition, condensation, and evaporation processes. It is first proposed that the droplet aerosols will experience firstly condensation and then evaporation, and this phenomenon is first implemented into the Monte Carlo method and sectional method with considering coagulation, deposition, and condensation/evaporation processes in both single-component and two-component aerosol particle systems. It is found that the calculated results of the DWOSMC method agree well with both the analytical solutions and the sectional method. The further developed DWOSMC method can predict the variation of particle number density, total particle volume, mean particle diameter, particle size distributions, and the component-related particle volume densities in both single component and two-component droplet aerosol systems considering coagulation, deposition, and condensation/evaporation processes.
Through the appearance observation of suspension rod in the metro gearbox, macro and micro observation of the fracture and quantitative analysis of the fracture, combined with the metallographic and hardness examination results of the boom, the finite element model was established and the force analysis of suspension rod was carried out to explore the causes of the fracture of the gearbox boom. The results show that the nature of suspension rod fracture is fatigue. The cause of its fatigue fracture is related to the low fatigue tolerance for booms in metro operation, and the surface shallow decarburization plays a role in promoting the fatigue fracture of suspension rod. The life of fatigue crack growth in the boom is 819 stations (or 1210 km), and the fatigue initiation life is 522,452 km.
To investigate the influence of the variation of geometric parameters on the leakage and heat transfer characteristics of labyrinth seals at various rotational speeds, the labyrinth seal models with different geometric parameters were numerically simulated based on the control variable methods. Results show the aerodynamic mechanism of leakage characteristics changing with rotational speed, as well as the leakage characteristics of labyrinth seals under the coupling action of geometric parameters and rotating speeds. When the characteristic scale changes along the direction of centrifugal force, the variation trend of labyrinth seal leakage characteristics is consistent at different rotational speeds. However, the leakage characteristics of labyrinth seals show the difference of rotational speed when the feature scale changes along the axis. At the same time, the laws of convective heat transfer on the surface of the rotor and stator are shown by the results of the studies, which provides reference for the thermodynamic analysis of labyrinth seals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.