Exposure of human tumor cell lines to moderate doses of anticancer agents induces terminal proliferation arrest accompanied by morphologic and enzymatic changes that resemble senescence of normal cells. We have investigated the role of p53 and p21 waf1/cip1 in the induction of this response in drug-treated tumor cells. Doxorubicin treatment induced the senescence-like phenotype (SLP) and its associated terminal growth arrest in wild-type HCT116 colon carcinoma cells; this response was strongly decreased but not abolished in HCT116 lines with homozygous knockout of p53 or p21. Transduction of HT1080 ®brosarcoma cells with a genetic inhibitor of p53 also decreased the induction of SLP and increased drug-induced mitotic cell death. To determine if drugstimulated p21 expression was responsible for senescence-like growth arrest, we have expressed dierent levels of p21 from an inducible promoter. While highlevel overexpression of p21 was sucient to induce SLP in HT1080 cells, the levels of p21 expressed in doxorubicin-treated cells could account for only a fraction of doxorubicin-induced SLP. Our results indicate that p53 and p21 act as positive regulators of senescence-like terminal proliferation arrest, but their function is neither sucient nor absolutely required for this treatment response in tumor cells.
Rationale: Angiogenesis is a crucial step towards tissue repair and regeneration after ischemia. The role of circulating exosomes in angiogenic signal transduction has not been well elucidated. Thus, this study aims to investigate the effects of coronary serum exosomes from patients with myocardial ischemia on angiogenesis and to elucidate the underlying mechanisms.Methods and Results: The patients were enrolled according to the inclusion and exclusion criteria. Coronary blood was obtained from the angiography catheter. Serum exosomes were purified and characterized by their specific morphology and surface markers. In vitro analysis showed that compared to exosomes from healthy controls (con-Exo), exosomes from patients with myocardial ischemia (isc-Exo) enhanced endothelial cell proliferation, migration and tube formation. In a mouse hind-limb ischemia model, blood perfusion and histological staining demonstrated that isc-Exo significantly promoted blood flow recovery and enhanced neovascularization compared to con-Exo. Further, we revealed that cardiomyocytes, but not cardiac fibroblasts or endothelial cells, were initiated to release exosomes under ischemic stress; cardiomyocytes might be the source of bioactive exosomes in coronary serum. In addition, microarray analysis indicated that miR-939-5p was significantly down-regulated in isc-Exo. By knockdown and overexpression analyses, we found that miR-939-5p regulated angiogenesis by targeting iNOS. miR-939-5p inhibited both iNOS's expression and its activity, attenuated endothelial NO production, and eventually impaired angiogenesis.Conclusions: Exosomes derived from patients with myocardial ischemia promote angiogenesis via the miR-939-iNOS-NO pathway. Our study highlights that coronary serum exosomes serve as an important angiogenic messenger in patients suffering from myocardial ischemia.
The age‐related functional exhaustion limits potential efficacy of mesenchymal stem cells (MSC) in treating cardiovascular disease. Therefore, rejuvenation of aged MSC in the elderly population is of great interest. We have previously reported that Erb‐B2 receptor tyrosine kinase 4 (ERBB4) plays a critical role in regulating MSC survival under hypoxia. The aim of this study was to investigate whether ERBB4 rejuvenates aged MSC and how ERBB4 enhances therapeutic efficacy of aged MSC in treating myocardial infarction (MI). Compared with vector aged MSC (aged‐MSC), ERBB4‐engineered aged MSC (ER4‐aged‐MSC) conferred resistance to oxidative stress‐induced cell death and ameliorated the senescent phenotype in vitro. Four weeks after MI, the ER4‐aged‐MSC group exhibited enhanced blood vessel density, reduced cardiac remodeling and apoptosis with improved heart function compared with the aged‐MSC group. Overexpression of ERBB4 caused an increase in phosphorylated v‐akt murine thymoma viral oncogene homolog 1 (AKT), and phosphorylated ERK expression under hypoxia. ER4‐aged‐MSC secreted higher levels of angiopoietin, epithelial neutrophil activating peptide 78, VEGF, and fibroblast growth factor 2, and enhanced tube formation in HUVEC. The impact of ERBB4 on protein expression, proangiogenesis, cell behavior, and cytokine secretion was abolished by inhibiting PI3K/AKT and MAPK/ERK signaling pathway.—Liang, X., Ding, Y., Lin, F., Zhang, Y., Zhou, X., Meng, Q., Lu, X., Jiang, G., Zhu, H., Chen, Y., Lian, Q., Fan, H., Liu, Z. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J. 33, 4559–4570 (2019). http://www.fasebj.org
Long noncoding RNAs belong to a class of noncoding RNAs longer than 200 nucleotides with the epigenetic regulation potential. As a novel molecular regulator, lncRNAs are often dysregulated in various pathological conditions and display multiple functions in a wide range of biological processes. Given that recent studies have indicated that lncRNAs are involved in atherosclerosis-related smooth muscle cell, endothelial cell, macrophage and lipid metabolism regulation, it is pertinent to understand the potential function of lncRNAs in atherosclerosis development. This review will highlight the recent updates of lncRNAs in atherogenesis and also discuss their potential roles as novel therapeutic targets.
© 2 0 0 2 L a n d e s B i o s c i e n c e . N o t f o r d i s t r i b u t i o n .[Cell Cycle 1, 59-66, January 2002]; published online as a Cell Cycle "Papers In Press" at www. ABSTRACT Induction of p21 WAF1/CIP1/SDI1 , a physiological mediator of cell cycle arrest, inhibits multiple genes involved in cell division. We have investigated the determinants of p21-mediated inhibition of two of these genes, polo-like kinase 1 (PLK1) and topoisomerase IIα (TOPO IIα). p21 expression from an inducible promoter in human HT1080 cells rapidly decreases cellular levels of PLK1 and TOPO IIα RNA without decreasing their RNA stability. p21 also inhibits reporter gene expression from the PLK1 and TOPO IIα promoters in transient and stable transfection assays. Promoter mutagenesis studies show that inhibition of the PLK1 promoter by p21 is mediated in part by tandem sequences CDE (cell cycle-dependent element) and CHR (cell cycle genes homology region). p21 response of the TOPO IIα promoter was found to be mediated through CDE (but not CHR) and the inverted CCAAT box 1 (ICB1). The extent of PLK1 and TOPO IIα promoter inhibition and the effects of promoter mutations differ under the conditions of growth arrest produced by p21 induction or by mimosine, a cell cycle inhibitor that increases p21 RNA but not protein expression in HT1080 cells. These results indicate that inhibition of cell division-associated genes by p21 is mediated by different but overlapping mechanisms, which are not a general consequence of cell cycle arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.