High capacity cathode materials for long‐life rechargeable lithium batteries are urgently needed. Selenium cathode has recently attracted great research attention due to its comparable volumetric capacity to but much better electrical conductivity than widely studied sulfur cathode. However, selenium cathode faces similar issues as sulfur (i.e., shuttling of polyselenides, volumetric expansion) and high performance lithium‐selenium batteries (Li–Se) have not yet been demonstrated at selenium loading >60% in the electrode. In this work, a 3D mesoporous carbon nanoparticles and graphene hierarchical architecture to storage selenium as binder‐free cathode material (Se/MCN‐RGO) for high energy and long life Li–Se batteries is presented. Such architecture not only provides the electrode with excellent electrical and ionic conductivity, but also efficiently suppresses polyselenides shuttling and accommodates volume change during charge/discharge. At selenium content of 62% in the entire cathode, the free‐standing Se/MCN‐RGO exhibits high discharge capacity of 655 mAh g−1 at 0.1 C (97% of theoretical capacity) and long cycling stability with a very small capacity decay of 0.008% per cycle over 1300 cycles at 1 C. The present report demonstrates significant progress in the development of high capacity cathode materials for long‐life Li batteries and flexible energy storage device.
Free-standing N-doped graphene papers (NGP), generated by pyrolysis of polydiallyldimethylammonium chloride, were successfully used as binder-free electrodes for the state-of-the-art Li/polysulfide-catholyte batteries. They exhibited high specific capacities of approximately 1000 mA h g(-1) (based on S) after 100 cycles and coulombic efficiencies great than 98%, significantly better than undoped graphene paper (GP). These NGP were characterized with XRD, X-ray photoelectron spectroscopy, thermogravimetric analysis, AFM, electron microscopy, and Raman and impedance spectroscopy before and after cycling. Spectroscopic evidence suggested stronger binding of sulfide to NGP relative to GP, and modelling results from DFT calculation, substantiated with experimental data, indicated that pyrrolic and pyridinic N atoms interacted more strongly with Li polysulfides than quaternary N atoms. Thus, more favorable partition of polysulfides between the electrode and the electrolyte and the corresponding effect on the morphology of the passivation layer were the causes of the beneficial effect of N doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.