High electronic conductivity of the support material and uniform distribution of the catalyst nanoparticles (NPs) are extremely desirable for electrocatalysts. In this paper, we present our recent progress on electrocatalysts for fuel cells with simultaneously improved conductivity of the supporting carbon nanofibers (CNFs) and distribution of platinum (Pt) NPs through facile incorporation of graphene nanoribbons (GNRs). Briefly, GNRs were obtained by the cutting and unzipping of multiwalled carbon nanotubes (MWCNTs) and subsequent thermal reduction and were first used as novel nanofillers in CNFs towards high performance support material for electrocatalysis. Through electrospinning and carbonization processes, GNR embedded carbon nanofibers (G-CNFs) with greatly enhanced graphitization and electronic conductivity were synthesized. Chemical deposition of Pt NPs onto G-CNFs generated a new Pt-G-CNF hybrid catalyst, with homogeneously distributed Pt NPs of ∼3 nm. Compared to Pt-CNF (Pt on pristine CNFs) and Pt-M-CNF (Pt on MWCNT embedded CNFs), Pt-G-CNF hybrids exhibit significantly improved electrochemically active surface area (ECSA), better CO tolerance for electro-oxidation of methanol and higher electrochemical stability, testifying G-CNFs are promising support materials for high performance electrocatalysts for fuel cells.
A soluble perfluorinated polymer poly(tetrafluoroethylene-co-perfluorovinyl ether sulfonamide) (PFSO2NH2) was successfully synthesized and used for preparation of perfluorinated anion exchange membranes with good conductivity and alkaline stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.