This study aimed to examine the role of thiamine in the local inflammation of ruminal epithelium caused by high-concentrate diets. Eighteen mid-lactating (148 ± 3 d in milk; milk yield = 0.71 ± 0.0300 kg/d) Saanen goats (body weight = 36.5 ± 1.99 kg; body condition score = 2.73 ± 0.16, where 0 = emaciated and 5 = obese) in parity 1 or 2 were selected. The goats were randomly divided into 3 groups (n = 6/group): (1) control diet (concentrate: forage 30:70), (2) high-concentrate diet (HC; concentrate: forage 70:30), and (3) highconcentrate diet with 200 mg of thiamine/kg of dry matter intake (THC; concentrate: forage 70:30). Goats remained on experimental diets for 8 wk. On the last day of 8 wk, ruminal and blood samples were collected to determine ruminal parameters, endotoxin lipopolysaccharide, and blood inflammatory cytokines. Goats were slaughtered to collect ruminal tissue to determine gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. Thiamine supplementation increased ruminal pH (6.03 vs. 5.42) compared with the HC group. Propionate (21.08 vs. 31.61 mM), butyrate (12.08 vs. 19.39 mM), lactate (0.52 vs. 0.71 mM), and free lipopolysaccharide (42.16 vs. 55.87 × 10 3 endotoxin units/mL) concentrations in ruminal fluid were lower in THC goats compared with HC goats. Similar to plasma interleukin 1β (IL-1β) concentration (209.31 vs. 257.23 pg/mL), blood CD8 + percentage (27.57 vs. 34.07%) also decreased in response to thiamine. Compared with HC goats, THC goats had lower ruminal epithelium activity of the enzymes myeloperoxidase and matrix metalloproteinase (MMP) 2 and 9. In contrast to HC, THC had downregulated mRNA expression of nuclear factor-κB (NFKB), TLR4, IL1B, MMP2, and MMP9 in ruminal epithelium. Thiamine supplementation led to lower relative protein expression of IL-1β, NF-κB unit p65, and phosphorylated NF-κB unit p65 in ruminal epithelium. Taken together, these results suggest that thiamine supplementation mitigates HC-induced local inflammation and ruminal epithelial disruption.
The objective of this study was to evaluate the effects of jugular l-Arg infusion on performance and immune function during lipopolysaccharide (LPS)-induced inflammation of lactating dairy cows. Eight Holstein cows (multiparous, 608.8 ± 31.5 kg) at mid-lactation were randomly assigned to 5-d jugular infusions of control (saline), Arg (3 g/h), LPS (0.033 μg/kg per h), and LPS + Arg (0.033 μg/kg per h of LPS and 3 g/h of Arg) in a replicated 4 × 4 Latin square design with 4 infusion periods separated by 10-d noninfusion periods. Jugular solutions of saline, Arg, LPS, and LPS + Arg were continuously infused using peristaltic pumps for approximately 6 h/d during infusion periods. Milk yield was measured on each day of the infusion period. Milk samples were obtained on the last 2 d of each infusion period, and blood samples were obtained on the last day of each infusion period before infusion (0 h) and at 3 and 6 h. We found that the jugular LPS infusion significantly increased serum concentrations of IL-1β, IL-6, tumor necrosis factor, inducible nitric oxide synthase, and lipopolysaccharide binding protein, whereas Arg attenuated the increase in IL-6 and inducible nitric oxide synthase levels and tended to decrease the lipopolysaccharide binding protein level. Arginine alleviated the decrease in dry matter intake and milk fat yield and the increase of somatic cell count induced by LPS. Total casein in milk was decreased during the LPS-induced inflammation period, and jugular Arg infusion significantly increased the content of total casein. In contrast, lactalbumin in milk increased during the LPS-induced inflammation period, whereas jugular Arg infusion significantly decreased the content of lactalbumin. The concentrations of plasma Gly, Thr, Ile, Leu, Arg, Phe, and total free AA were significantly decreased by LPS treatment, but Arg attenuated this tendency. These results indicated that jugular Arg infusion (18 g/d) has protective effects on relieving inflammatory stress and improving immunity status triggered by LPS. In conclusion, Arg could attenuate inflammatory stress and improve milk performance of lactating dairy cows. This protective effect may be due to the ability of Arg to suppress LPS effects and improve immunity status.
The objective of this study was to evaluate the effects of dietary physically effective neutral detergent fiber (peNDF) content on the feeding behavior, digestion, ruminal fermentation parameters, and growth of 8- to 10-mo-old dairy heifers and to predict the adequacy of dietary fiber in growing dairy heifers. Twenty-four Holstein dairy heifers (245 ± 10.8 d of age, 305.6 ± 8.5 kg initial live weight) were randomly divided into 4 treatments with 6 replicates as a completely randomized design. During the 60-d period with a 10-d adaptation, heifers were offered 1 of 4 diets, which were chemically identical but included different peNDF (particle size is >8 mm and <19 mm) content (% DM): 10.8, 13.5, 18.0, or 19.8%, which was achieved by chopping forage into different lengths (fine = 1 cm, short = 3 cm, medium = 5 cm, and long = 7 cm). The concentrate and silage were mixed and fed restrictedly and exclusive of forage (Chinese ryegrass hay) were offered ad libitum. The body weight and frame size of the heifers were measured every 15 d during the experimental period. Samples of the rumen content (2 h after the morning feeding) were taken for pH, ammonia, and volatile fatty acid determination. The dry matter intake and average daily gain of the heifers were not significantly affected by peNDF content. The body frame size (including withers height, body length, and heart girth) of the heifers was not increased significantly by enhanced peNDF content. Ruminal pH and ammonia concentration were both increased with increasing dietary peNDF content. The ruminal total volatile fatty acid concentration and percentage of acetate and butyrate profiles were not significantly affected by dietary peNDF content. However, the enhanced peNDF content led to a decrease in the propionate percentage. The ratio of acetate to propionate in the 13.5% treatment was highest among the treatments. Increasing the particle size and dietary peNDF content resulted in increased eating and chewing time but had no effect on rumination time. Heifer total eating and chewing time and eating and chewing time per kilogram of dry matter intake were increased with increasing dietary peNDF content. The apparent digestibility of acid detergent fiber and crude protein was improved with an increasing content of dietary peNDF. The results suggest that an optimal or advisable dietary particle size and peNDF content improves chewing activity, rumen fluid pH, and ruminal fermentation. The data based on feeding behavioral and growth responses of heifers as well as rumen fermentation and digestion by improving total eating and chewing time indicate that 18.0% dietary peNDF content is the most suitable for 8- to 10-mo-old Holstein heifers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.