Definitive embeddings remain a fundamental challenge of computational musicology for symbolic music in deep learning today. Analogous to natural language, music can be modeled as a sequence of tokens. This motivates the majority of existing solutions to explore the utilization of word embedding models to build music embeddings. However, music differs from natural languages in two key aspects: (1) musical token is multi-faceted-it comprises of pitch, rhythm and dynamics information; and (2) musical context is two-dimensional-each musical token is dependent on both melodic and harmonic contexts. In this work, we provide a comprehensive solution by proposing a novel framework named PiRhDy that integrates pitch, rhythm, and dynamics information seamlessly. PiRhDy adopts a hierarchical strategy which can be decomposed into two steps: (1) token (i.e., note event) modeling, which separately represents pitch, rhythm, and dynamics and integrates them into a single token embedding; and (2) context modeling, which utilizes melodic and harmonic knowledge to train the token embedding. A thorough study was made on each component and sub-strategy of PiRhDy. We further validate our embeddings in three downstream tasks-melody completion, accompaniment suggestion, and genre classification. Results indicate a significant advancement of the neural approach towards symbolic music as well as PiRhDy's potential as a pretrained tool for a broad range of symbolic music applications. CCS Concepts • Information systems → Music retrieval; • Computing methodologies → Learning latent representations.
Developing link prediction models to automatically complete knowledge graphs has recently been the focus of significant research interest. The current methods for the link prediction task have two natural problems: 1) the relation distributions in knowledge graphs are usually unbalanced, and 2) there are many unseen relations that occur in practical situations. These two problems limit the training effectiveness and practical applications of the existing link prediction models. We advocate a holistic understanding of KGs and we propose in this work a unified Generalized Relation Learning framework GRL to address the above two problems, which can be plugged into existing link prediction models. GRL conducts a generalized relation learning, which is aware of semantic correlations between relations that serve as a bridge to connect semantically similar relations. After training with GRL, the closeness of semantically similar relations in vector space and the discrimination of dissimilar relations are improved. We perform comprehensive experiments on six benchmarks to demonstrate the superior capability of GRL in the link prediction task. In particular, GRL is found to enhance the existing link prediction models making them insensitive to unbalanced relation distributions and capable of learning unseen relations.
No abstract
Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in both short and long scenarios. We argue that there are two key issues for long distance reasoning: i) which edge to select, and ii) when to stop the search. In this work, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.