Day by day the call to solve traffic congestion problems is increasing. Subway tunnels and high-speed railway are commonly used for transportation. Therefore, tunnel construction induces soil movement, which in turn affects the stability and integrity of adjacent existing buildings. A series of numerical simulations have been established to investigate the effects of tunnel construction of the Greater Cairo Metro–Line 3-Phase-1 on adjacent pile cap foundations of Garage El-Attaba building. Many parameters have been investigated such as tunnel diameter and the distance between pile and tunnel at different tunnel axis and deep and shallow tunnel. After thorough analysis of the results’ simulation, it was found that the tunneling induces additional axial forces and bending moment as well as increasing axial settlement and lateral deflection. Moreover, the results obtained from the parametric study for the shallow and deep tunnel show that the tunnel depth has a much significant effect on piles responses. Finally, the tunnel diameter has an impact on pile responses as well as the pile cap foundation influenced by the tunnel when the tunnel is in very close vicinity of the pile, and its effect is modest to negligible if located far away from the buildings.
Underground structures play an important role in achieving the requirements of rapid urban development such as tunnels, parking garages, facilities, etc. To achieve what is needed, new transportation methods have been proposed to solve traffic congestion problems by using of high-speed railway and subway tunnels. One of the issues in urban spaces due to tunnel excavation is considerable surface settlements that also induce problems for surface structures. There are a variety of published relationships concerned with field measurements and theoretical approaches to evaluating the amount of the maximum surface settlement value due to tunneling. This paper studies the ground surface settlement caused by the Greater Cairo Metro – Line 3 - Phase-1. This project was constructed by a slurry shield Tunnel Boring Machine (TBM). Therefore, this work consists of two parts. The first part presents the details of the project and monitoring results field and laboratory geotechnical investigations in order to determine the soil properties. The second part is to the comparison between the field measurements and theoretical approaches for surface settlement due to tunneling construction. At the end of the works, the results show that the more convenient methods which approach the field measurements, and the major transverse settlement occurs within the area about 2.6 times the diameter of the tunnel excavation. Doi: 10.28991/cej-2020-03091617 Full Text: PDF
When the filler-bitumen ratio of asphalt mortar changes, its adhesion and viscoelasticity will also change, as well as its mechanical performances, such as fatigue durability at normal temperature and low-temperature ductility. Thus, the filler-bitumen ratio directly affects the asphalt mortar's performance. This paper tested the physical indexes of the No. 70 matrix asphalt mortar modified by additive Sasobit (SB) and Sasowam (SW) through dynamic shear rheometer and bending beam rheometer under different temperature conditions, and comprehensively analyzed the high-temperature anti-rutting and fatigue performance, low-temperature crack resistance performance, and ductility of asphalt mortar. The results show that ore powder not only can increase the anti-rutting factor but also can increase the aging resistance of asphalt. SB has better performances than SW at high temperatures. As for the filler-bitumen ratio of asphalt mortar with additive SB, the recommended value is between 0.8 and 1.2, and the value may be a little larger for that with SW.
In all types of new arch bridge structures, the requirements of the foundation are becoming more and more strict. Under the action of horizontal thrust, the distribution of the internal forces of the pile group in which inclined piles participate in an arch foundation is complicated. In this regard, the horizontal forces of each pile in a pile group and the horizontal bearing performance of each pile in a pile group under the action of total thrust are investigated by establishing a pile group foundation model and a p-y curve difference equation. After an in-depth analysis of the simulation results, it is found that the load distribution calculated by the finite element method is very close to that calculated by the p-y curve method, both in terms of curve shape and numerical value, indicating that the pile top load distribution is close to the actual situation. In addition, the maximum shear force of each pile body occurs at the top of the pile, and the maximum bending moment occurs at the point 1/5 away from the top of the pile. Finally, the nonlinear analysis of the p-y curve method can be well applied to the calculation of bridge pile foundations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.