In this article, ultrafine gelatin (Gt) fibers were successfully produced with the use of the electrical spinning or electrospinning technique. A fluorinated alcohol of 2,2,2-trifluoroethanol (TFE) was used as the dissolving solvent. The morphology of the electrospun gelatin fibers was found to be dependent on the alteration of gelatin concentration ranging from 2.5% w/v to 12.5% w/v at 2.5% increment intervals. Based on the electrospun gelatin fibers obtained, 10% w/v gelatin/TFE solution was selected and mixed with 10% w/v poly(⑀-caprolactone) (PCL) in TFE at a ratio of 50:50 and co-electrospun to produce gelatin/PCL composite membranes. Contact-angle measurement and tensile tests indicated that the gelatin/ PCL complex fibrous membrane exhibited improved mechanical properties as well as more favorable wettability than that obtained from either gelatin or PCL alone. The gelatin/PCL fibrous membranes were further investigated as a promising scaffold for bone-marrow stromal cell (BMSC) culture. Scanning electron microscopy (SEM) and laser confocal microscopy observations showed that the cells could not only favorably attach and grow well on the surface of these scaffolds, but were also able to migrate inside the scaffold up to 114 m within 1 week of culture. These results suggest the potential of using composite gelatin/PCL fibrous scaffolds for engineering three-dimensional tissues.
Cartilage damage has been documented as one of the major problems leading to knee repair procedures worldwide. The low availability of cartilage that can be harvested without causing a negative health impact has led to the focus on the potential of stem cells, which have been transplanted into damaged areas and successfully grown into new healthy tissue. This study aims to compare the chondrogenic potential of two stem cell sources--adipose tissue and bone marrow. Stem cells were isolated from donor-matched adipose tissue and bone marrow, following established protocols. The cells were grown in a chondrogenic cocktail containing transforming growth factor-beta3 (TGF-beta3) up till 28 days, and assessed for expression changes of cartilage markers at the gene and protein level, using qualitative and quantitative methods. Controls were included for every time point. Real-time polymerase chain reaction (PCR) results showed increases in the gene expression of collagen II in both the cell types that received TGF-beta3 treatment. However, histological, immunohistochemical, and glycosaminoglycan (GAG) assay clearly showed that collagen II and proteoglycans (PG) were synthesized only in the growth factor-treated bone marrow stem cells (BMSCs). These findings support the results obtained in our in vivo comparative study done on an animal model, suggesting that BMSCs are more suitable than adipose-derived stem cells (ADSCs) for chondrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.