A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems.
Tumor infiltration with Vα24-invariant NKT cells (NKTs) associates with favorable outcome in neuroblastoma and other cancers. Although NKTs can be directly cytotoxic against CD1d + cells, the majority of human tumors are CD1d -. Therefore, the role of NKTs in cancer remains largely unknown. Here, we demonstrate that CD68 + tumor-associated monocytes/macrophages (TAMs) represented the majority of CD1d-expressing cells in primary human neuroblastomas. TAMs stimulated neuroblastoma growth in human cell lines and their xenografts in NOD/SCID mice via IL-6 production. Indeed, TAMs produced IL-6 in primary tumors and in the BM of patients with metastatic neuroblastoma. Gene expression analysis using TaqMan low-density arrays of 129 primary human neuroblastomas without MYCN amplification revealed that high-level expression of TAM-specific genes (CD14, CD16, IL6, IL6R, and TGFB1) was associated with poor 5-year event-free survival. While NKTs were not cytotoxic against neuroblastoma cells, they effectively killed monocytes pulsed with tumor cell lysate. The killing of monocytes was CD1d restricted because it was inhibited by a CD1d-specific mAb. Cotransfer of human monocytes and NKTs to tumor-bearing NOD/SCID mice decreased monocyte number at the tumor site and suppressed tumor growth compared with mice transferred with monocytes alone. Thus, killing of TAMs reveals what we believe to be a novel mechanism of NKT antitumor activity that relates to the disease outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.