A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems.
Nitrogen-doped graphene was demonstrated as an efficient and alternative metal-free electrocatalyst for dye-sensitized solar cells. Electrochemical measurements showed that the nitrogen-doping process can remarkably improve the catalytic activity of graphene toward triiodide reduction, lower the charge transfer resistance, and thus enhance the corresponding photovoltaic performance. Furthermore, the nitrogen doping levels ranging from 3.5 at% to 18 at%, as well as the nitrogen states (including pyrrolic, pyridinic and quaternary configurations) in graphene, were controlled to interpret the roles of graphene structure in catalytic activity and device performance. The results suggested that the nitrogen states, rather than the total N content, have a significant effect on the catalytic activity. Both pyridinic and quaternary nitrogen states can provide active sites for promoting triiodide reduction reaction, probably due to the shift in redox potential and the lowered adsorption energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.