In this study, a direct recompression supercritical CO2 Brayton cycle, using parabolic trough solar concentrators (PTC), is developed and analyzed employing a new simulation model. The effects of variations in operating conditions and parameters on the performance of the s-CO2 Brayton cycle are investigated, also under varying weather conditions. The results indicate that the efficiency of the s-CO2 Brayton cycle is mainly affected by the compressor outlet pressure, turbine inlet temperature and cooling temperature: Increasing the turbine inlet pressure reduces the efficiency of the cycle and also requires changing the split fraction, where increasing the turbine inlet temperature increases the efficiency, but has a very small effect on the split fraction. At the critical cooling temperature point (31.25 °C), the cycle efficiency reaches a maximum value of 0.4, but drops after this point. In optimal conditions, a cycle efficiency well above 0.4 is possible. The maximum system efficiency with the PTCs remains slightly below this value as the performance of the whole system is also affected by the solar tracking method used, the season and the incidence angle of the solar beam radiation which directly affects the efficiency of the concentrator. The choice of the tracking mode causes major temporal variations in the output of the cycle, which emphasis the role of an integrated TES with the s-CO2 Brayton cycle to provide dispatchable power.
Superheated steam temperature (SST) is one of the most critical parameters for the process safety, overall efficiency and pollution reduction of coal-fired power plants. However, SST control is challenging due to various disturbances and model uncertainties, especially in the face of the growing penetration of intermittent renewable energy into the power grid. To this end, a cascaded Disturbance Observer-PI (DOB-PI) control strategy is proposed to enhance control performance. The observer design and parameter tuning are carried out through mechanism analysis on the proposed structure. Furthermore, a robust loop shaping method is introduced as a hard constraint to balance the control performance and robustness. The controller parameters are optimized based on the multi-objective artificial bee colony optimization (MOABC) algorithm. Simulation results show that the proposed cascaded DOB-PI control strategy can significantly improve the disturbance rejection performance of both the inner- and outer-loops of the SST control system. This paper indicates promising prospects for the proposed method in future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.