We report on a combined current-modulation annealing (CCMA) method, which integrates the optimized pulsed current (PC) and DC annealing techniques, for improving the giant magnetoimpedance (GMI) effect and its field sensitivity of Co-rich amorphous microwires. Relative to an as-prepared Co68.2Fe4.3B15Si12.5 wire, CCMA is shown to remarkably improve the GMI response of the wire. At 10 MHz, the maximum GMI ratio and its field sensitivity of the as-prepared wire were, respectively, increased by 3.5 and 2.28 times when subjected to CCMA. CCMA increased atomic order orientation and circumferential permeability of the wire by the co-action of high-density pulsed magnetic field energy and thermal activation energy at a PC annealing stage, as well as the formation of uniform circular magnetic domains by a stable DC magnetic field at a DC annealing stage. The magnetic moment can overcome eddy-current damping or nail-sticked action in rotational magnetization, giving rise to a double-peak feature and wider working field range (up to ±2 Oe) at relatively higher frequency (f ≥ 1 MHz).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.