The deformation behaviour of the two phases of three plain carbon dual-phase steels after various treatments has been studied using a scanning electron microscope equipped with a tensile straining stage. The distribution of strains between the ferrite and martensite phases, as well as among the different grains of each phase, was observed to be inhomogeneous. The martensite/ferrite strain ratio, which defines the degree of uniformity of straining between the phases, depends on the microstructural parameters of the steels: it increases with increasing volume fraction of martensite, but decreases as the carbon content of the martensite increases. Tempering at various temperatures causes a decrease in the martensite/ferrite microhardness ratio and hence causes an increase in the strain ratio. The macroscopic strain of the specimen at which the martensite begins to deform was also found to be dependent on the microstructural parameters. Regions of applicability of the existing theories of the strength of dual-phase steels can be estimated according to the deformation condition of the martensite.MSTj 235
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.