With the development of national information processes, specific image information from secret departments or individuals is often required to be confidentially transmitted. Numerous image encryption methods exist, especially since the initial value sensitivity and other characteristics of chaos theory and chaos theory-based encryption have become increasingly important in recent years. At present, DNA coding constitutes a new research direction of image encryption that uses the four base pairs of DNA code and image pixel values to establish a special correspondence, in order to achieve pixel diffusion. There are eight DNA encoding rules, and current methods of selecting the DNA encoding rules are largely fixed. Thus, the security of encoded data is not high. In this paper, we use the Lorenz chaotic system, Chen’s hyperchaotic system, and the DNA encoding combination and present a new image encryption algorithm that can dynamically select eight types of DNA encoding rules and eight types of DNA addition and subtraction rules, with significant improvements in security. Through simulation experiments and histograms, correlations, and NPCR analyses, we have determined that the algorithm possesses numerous desirable features, including good encryption effects and antishear and antinoise performances.
An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy.
We propose a new image encryption algorithm based on DNA sequences combined with chaotic maps. This algorithm has two innovations: (1) it diffuses the pixels by transforming the nucleotides into corresponding base pairs a random number of times and (2) it confuses the pixels by a chaotic index based on a chaotic map. For any size of the original grayscale image, the rows and columns are fist exchanged by the arrays generated by a logistic chaotic map. Secondly, each pixel that has been confused is encoded into four nucleotides according to the DNA coding. Thirdly, each nucleotide is transformed into the corresponding base pair a random number of time(s) by a series of iterative computations based on Chebyshev’s chaotic map. Experimental results indicate that the key account of this algorithm is 1.536 × 10127, the correlation coefficient of a 256 × 256 Lena image between, before, and after the encryption processes was 0.0028, and the information entropy of the encrypted image was 7.9854. These simulation results and security analysis show that the proposed algorithm not only has good encryption effect, but also has the ability to repel exhaustive, statistical, differential, and noise attacks.
Forest fires represent a real threat to human lives, ecological systems, and infrastructure. Many commercial fire detection sensor systems exist, but all of them are difficult to apply at large open spaces like forests because of their response delay, necessary maintenance needed, high cost, and other problems. In this paper a forest fire detection algorithm is proposed, and it consists of the following stages. Firstly, background subtraction is applied to movement containing region detection. Secondly, converting the segmented moving regions from RGB to YCbCr color space and applying five fire detection rules for separating candidate fire pixels were undertaken. Finally, temporal variation is then employed to differentiate between fire and fire-color objects. The proposed method is tested using data set consisting of 6 videos collected from Internet. The final results show that the proposed method achieves up to 96.63% of true detection rates. These results indicate that the proposed method is accurate and can be used in automatic forest fire-alarm systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.