Functional connectivity (FC) network based on resting-state functional magnetic resonance imaging (rs-fMRI) has become an important tool to explore and understand the brain, which can provide objective basis for the diagnosis of neurodegenerative diseases, such as autism spectrum disorder (ASD). However, most functional connectivity (FC) networks only consider the unilateral features of nodes or edges, and the interaction between them is ignored. In fact, their integration can provide more comprehensive and crucial information in the diagnosis. To address this issue, a new multi-view brain network feature enhancement method based on self-attention mechanism graph convolutional network (SA-GCN) is proposed in this article, which can enhance node features through the connection relationship among different nodes, and then extract deep-seated and more discriminative features. Specifically, we first plug the pooling operation of self-attention mechanism into graph convolutional network (GCN), which can consider the node features and topology of graph network at the same time and then capture more discriminative features. In addition, the sample size is augmented by a “sliding window” strategy, which is beneficial to avoid overfitting and enhance the generalization ability. Furthermore, to fully explore the complex connection relationship among brain regions, we constructed the low-order functional graph network (Lo-FGN) and the high-order functional graph network (Ho-FGN) and enhance the features of the two functional graph networks (FGNs) based on SA-GCN. The experimental results on benchmark datasets show that: (1) SA-GCN can play a role in feature enhancement and can effectively extract more discriminative features, and (2) the integration of Lo-FGN and Ho-FGN can achieve the best ASD classification accuracy (79.9%), which reveals the information complementarity between them.
Brain functional network (BFN) based on electroencephalography (EEG) has been widely used to diagnose brain diseases, such as major depressive disorder (MDD). However, most existing BFNs only consider the correlation between two channels, ignoring the high-level interaction among multiple channels that contain more rich information for diagnosing brain diseases. In such a sense, the BFN is called low-order BFN (LO-BFN). In order to fully explore the high-level interactive information among multiple channels of the EEG signals, a scheme for constructing a high-order BFN (HO-BFN) based on the “correlation’s correlation” strategy is proposed in this paper. Specifically, the entire EEG time series is firstly divided into multiple epochs by sliding window. For each epoch, the short-term correlation between channels is calculated to construct a LO-BFN. The correlation time series of all channel pairs are formulated by these LO-BFNs obtained from all epochs to describe the dynamic change of short-term correlation along the time. To construct HO-BFN, we cluster all correlation time series to avoid the problems caused by high dimensionality, and the correlation of the average correlation time series from different clusters is calculated to reflect the high-order correlation among multiple channels. Experimental results demonstrate the efficiency of the proposed HO-BFN in MDD identification, and its integration with the LO-BFN can further improve the recognition rate.
BackgroundThe abnormal brain functional connectivity (FC) of patients with mental diseases is closely linked to the transition features among brain states. However, the current research on state transition will produce certain division deviations in the measurement method of state division, and also ignore the transition features among multiple states that contain more abundant information for analyzing brain diseases.PurposeTo investigate the potential of the proposed method based on coarse‐grained similarity measurement to solve the problem of state division, and consider the transition features among multiple states to analyze the FC abnormalities of autism spectrum disorder (ASD) patients.MethodsWe used resting‐state functional magnetic resonance imaging to examine 45 ASD and 47 healthy controls (HC). The FC between brain regions was calculated by the sliding window and correlation algorithm, and a novel coarse‐grained similarity measure method was used to cluster the FC networks into five states, and then extract the features both of the state itself and the transition features among multiple states for analysis and diagnosis.Results(1) The state as divided by the coarse‐grained measurement method improves the diagnostic performance of individuals with ASD compared with previous methods. (2) The transition features among multiple states can provide complementary information to the features of the state itself in the ASD analysis and diagnosis. (3) ASD individuals have different brain state transitions than HC. Specifically, the abnormalities in intra‐ and inter‐network connectivity of ASD patients mainly occur in the default mode network, the visual network, and the cerebellum.ConclusionsSuch results demonstrate that our approach with new measurements and new features is effective and promising in brain state analysis and ASD diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.