Highlights d RNA-seq of oocytes and granulosa cells mapped transcriptome and signature genes d KEGG/GSEA analysis uncovered pathways involved in primordial follicle activation d Oocyte-granulosa cell interactions exhibit stage-and species-specific patterns d RNA-seq analysis identified candidate secretory biomarkers of ovarian reserve
Hepatitis B virus (HBV) causes acute and chronic hepatitis and hepatocellular carcinoma. Small interfering RNA (siRNA) and lamivudine have been shown to have anti-HBV effects through different mechanisms. However, assessment of the genome-wide effects of siRNA and lamivudine on HBV-producing cell lines has not been reported, which may provide a clue to interrogate the HBV-cell interaction and to evaluate the siRNA's side effect as a potential drug. In the present study, we designed seven siRNAs based on the conserved HBV sequences and tested their effects on the expression of HBV genes following sorting of siRNA-positive cells. Among these seven siRNAs, siRNA-1 and siRNA-7 were found to effectively suppress HBV gene expression. We further addressed the global gene expression changes in stable HBV-producing cells induced by siRNA-1 and siRNA-7 by use of human genome-wide oligonucleotide microarrays. Data from the gene expression profiling indicated that siRNA-1 and siRNA-7 altered the expression of 54 and 499 genes, respectively, in HepG2.2.15 cells, which revealed that different siRNAs had various patterns of gene expression profiles and suggested a complicated influence of siRNAs on host cells. We further observed that 18 of these genes were suppressed by both siRNA-1 and siRNA-7. Interestingly, seven of these genes were originally activated by HBV, which suggested that these seven genes might be involved in the HBV-host cell interaction. Finally, we have compared the effects of siRNA and lamivudine on HBV and host cells, which revealed that siRNA is more effective at inhibiting HBV expression at the mRNA and protein level in vitro, and the gene expression profile of HepG2.2.15 cells treated by lamivudine is totally different from that seen with siRNA.
MicroRNAs (miRNAs) play important roles in the posttranscriptional regulation of gene expression. Recent evidence has indicated the pathological relevance of miRNA dysregulation in hepatitis virus infection; however, the roles of microRNAs in the regulation of hepatitis B virus (HBV) expression are still largely unknown. In this study we identified that miR-373 was up-regulated in HBV-infected liver tissues and that the members of the miRs-371-372-373 (miRs-371-3) gene cluster were also significantly co-up-regulated in HBV-producing HepG2.2.15 cells. A positive in vivo association was identified between hepatic HBV DNA levels and the copy number variation of the miRs-371-3 gene cluster. The enhanced expression of miRs-372/373 stimulated the production of HBV proteins and HBV core-associated DNA in HepG2 cells transfected with 1.33HBV. Further, nuclear factor I/B (NFIB) was identified to be a direct functional target of miRs-372/373 by in silico algorithms and this was subsequently confirmed by western blotting and luciferase reporter assays. Knockdown of NFIB by small interfering RNA (siRNA) promoted HBV expression, whereas rescue of NFIB attenuated the stimulation in the 1.33HBV-transfected HepG2 cells. Conclusion: Our study revealed that miRNA (miRs-372/373) can promote HBV expression through a pathway involving the transcription factor (NFIB). This novel model provides new insights into the molecular basis in HBV and host interaction. (HEPATOLOGY 2011;54:808-819) H epatitis B virus (HBV) is a 3.2 kb circular hepadnavirus that transcribes four major RNA molecules that encode a viral X protein, surface proteins, core proteins, and a reverse transcriptase. The longest 3.5 kb RNA also acts as a pregenomic RNA (pgRNA) intermediate for the reverse replication. Four promoters and two enhancers have been found to regulate the viral gene transcription.1 After HBV infection, most adults produce a self-limited infection with a quick viral clearance; however, others become carriers or develop Abbreviations: CNV, copy number variation; ENI-Cp, enhancer I and core promoter of hepatitis B virus; FFPE, formalin-fixed, paraffin embedded; HBeAg, hepatitis B virus e antigen; HBsAg, hepatitis B virus surface antigen; HBV, hepatitis B virus; miRNA, microRNA; miRs-371-3, miRs-371-372-373; NFIB, nuclear factor I/B; qPCR, quantitative real-time polymerase chain reaction; SAM, significance analysis of microarrays; UTR, untranslated region.From the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.