Purpose: Sirtuins play an important role in cancer development. Sirt7, as a member of this family, is frequently overexpressed in certain carcinomas, but the oncogenic mechanism is seldom reported. In this study, Sirt7 was characterized for its role in colorectal cancer aggressiveness and underlying molecular mechanisms.Experimental Design: Quantitative PCR, Western blotting, and immunohistochemistry were performed to study Sirt7 expression in a cohort of colorectal cancer tissues and non-tumor tissues and cells. A series of in vitro and in vivo assays was performed to elucidate the function of Sirt7 in colorectal cancer and its underlying mechanisms. Association between the Sirt7 signature and survival was examined using Kaplan-Meier analysis and log-rank tests.Results: The Sirt7 protein level significantly correlated with tumor stage (P ¼ 0.029), lymph node metastasis (P ¼ 0.046), and poor patient survival (P < 0.05). Sirt7 knockdown significantly inhibited colorectal cancer cell proliferation, colony formation, and motility. Ectopic Sirt7 expression promoted colony formation, induced a more invasive phenotype, and accelerated cell growth both in vitro and in vivo. Moreover, Sirt7 enhanced MAPK pathway activity concomitantly with p-ERK and p-MEK upregulation. In Sirt7-overexpressing cells, the mesenchymal markers vimentin and fibronectin were upregulated, and the epithelial markers E-cadherin and b-catenin were downregulated, which was linked to enhanced invasion by colorectal cancer cells.Conclusion: Our findings suggest that Sirt7 plays an important role in the development and progression of human colorectal cancer and functions as a valuable marker of colorectal cancer prognosis. Clin Cancer Res; 20(13); 3434-45. Ó2014 AACR.
BackgroundOTUB1 (OTU deubiquitinase, ubiquitin aldehyde binding 1) is a deubiquitinating enzyme (DUB) that belongs to the OTU (ovarian tumor) superfamily. The aim of this study was to clarify the role of OTUB1 in colorectal cancer (CRC) and to identify the mechanism underlying its function.MethodsTwo hundred and sixty CRC samples were subjected to association analysis of OTUB1 expression and clinicopathological variables using immunohistochemical (IHC) staining. Overexpression of OTUB1 was achieved in SW480 and DLD-1 cells, and downregulation of OTUB1 was employed in SW620 cells. Then, migration and invasion assays were performed, and markers of the epithelial-mesenchymal transition (EMT) were analyzed. In addition, hepatic metastasis models in mice were used to validate the function of OTUB1 in vivo.ResultsOTUB1 was overexpressed in CRC tissues, and the expression level of OTUB1 was associated with metastasis. A high expression level of OTUB1 was also associated with poor survival, and OTUB1 served as an independent prognostic factor in multivariate analysis. OTUB1 also promoted the metastasis of CRC cell lines in vitro and in vivo by regulating EMT.ConclusionsOTUB1 promotes CRC metastasis by facilitating EMT and acts as a potential distant metastasis marker and prognostic factor in CRC. Targeting OTUB1 may be helpful for the treatment of CRC.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-13-258) contains supplementary material, which is available to authorized users.
BackgroundClock genes drive about 5–15% of genome-wide mRNA expression, and disruption of the circadian clock may deregulate the cell's normal biological functions. Cryptochrome 1 is a key regulator of the circadian feedback loop and plays an important role in organisms. The present study was conducted to investigate the expression of Cry1 and its prognostic significance in colorectal cancer (CRC). In addition, the function of Cry1 in human CRC was investigated in cell culture models.MethodsReal-time quantitative PCR, Western blot analysis and immunohistochemistry were used to explore Cry1 expression in CRC cell lines and primary CRC clinical specimens. MTT and colony formation assays were used to determine effects on cellular proliferation ability. The animal model was used to explore the Cry1 impact on the tumor cellular proliferation ability in vivo. Transwell assays were performed to detect the migration ability of the cell lines. Statistical analyzes were applied to evaluate the diagnostic value and the associations of Cry1 expression with clinical parameters.ResultsCry1 expression was up regulated in the majority of the CRC cell lines and 168 primary CRC clinical specimens at the protein level. Clinical pathological analysis showed that Cry1 expression was significantly correlated with lymph node metastasis (p = 0.004) and the TNM stage (p = 0.003). High Cry1 expression was associated with poor overall survival in CRC patients (p = 0.010). Experimentally, we found that up-regulation of Cry1 promoted the proliferation and migration of HCT116 cells, while down-regulation of Cry1 inhibited the colony formation and migration of SW480 cells.ConclusionsThese results suggest that Cry1 likely plays important roles in CRC development and progression andCry1 may be a prognostic biomarker and a promising therapeutic target for CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.